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ABSTRACT

Quantum computing offers a transformative approach to computational chemistry, promising to
simulate molecular systems with accuracy unattainable by classical methods. This article provides a
comprehensive examination of the current state and future trajectory of quantum chemistry
simulations, focusing on the critical transition from demonstrating basic quantum algorithms to
achieving chemically meaningful results on complex molecular systems. We analyse three
interconnected research frontiers essential for this transition: advanced error mitigation strategies
including Zero-Noise Extrapolation (ZNE), Probabilistic Error Cancellation (PEC), and symmetry
verification; algorithms for computing excited states and molecular dynamics through Variational
Quantum Deflation (VQD), Subspace-Search VQE (SSVQE), and quantum Equation of Motion
(qQEOM) methods; and embedding techniques such as Density Matrix Embedding Theory (DMET)
and DFT embedding that enable simulation of large systems on resource-constrained quantum
processors. We present recent benchmark results demonstrating progress from Hz to complex
molecules including H20, Nz, and reaction pathways, with some achieving chemical accuracy on
current Noisy Intermediate-Scale Quantum (NISQ) hardware. The article concludes with a forward-
looking perspective on the 25-100 logical qubit regime that represents a critical milestone towards
fault-tolerant quantum advantage in chemistry, with particular attention to the emerging role of

artificial intelligence in accelerating quantum algorithm development and error mitigation.

Keywords: quantum computing, computational chemistry, variational quantum eigensolver, error
mitigation, excited states, quantum embedding, NISQ, fault-tolerant quantum computing, VQE, molecular

simulation

1. Introduction

The fundamental laws governing all chemical processes are rooted in quantum mechanics, yet
their direct computational simulation presents one of science's most formidable challenges. The
electronic structure of molecules is determined by the time-independent Schrédinger equation,
the solution of which provides complete information about chemical bonding, reactivity, and

material properties. However, the computational resources required to solve this equation scale
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exponentially with the number of electrons, a phenomenon that has come to be known as the

"exponential wall" of quantum chemistry.

Consider a modest organic molecule such as caffeine (CsH10N4Oz), containing 102
electrons distributed across numerous molecular orbitals. A full Configuration Interaction
(FCI) calculation—the gold standard for exact electronic structure—would require
manipulating matrices of dimension exceeding 10°°, utterly beyond the capacity of any
conceivable classical supercomputer. This fundamental limitation has profound practical
consequences, constraining our ability to design novel pharmaceuticals, catalysts, and materials
from first principles. Current classical methods such as Density Functional Theory (DFT) and
Coupled Cluster with Singles, Doubles, and perturbative Triples (CCSD(T)) offer practical
compromises, but these approximations break down precisely for the strongly correlated systems

most relevant to catalysis, superconductivity, and biological electron transfer.

Quantum computing offers a paradigm shift in addressing this challenge. The central insight,
articulated by Richard Feynman in 1982 and subsequently formalised by Seth Lloyd, is elegantly
simple: nature itself is quantum mechanical, and thus a computer operating according to
quantum principles can simulate quantum systems without the exponential overhead faced by
classical machines. A quantum computer represents the state of a molecular system using qubits,
quantum analogues of classical bits that can exist in superpositions of states. Through the
controlled manipulation of these qubits via quantum gates, the computer can explore the
exponentially large Hilbert space of electronic configurations simultancously, leveraging

quantum interference to amplify correct solutions.

The theoretical foundations for quantum simulation of chemistry were established through
landmark algorithms. The quantum phase estimation (QPE) algorithm, developed in the 1990s,
provides a route to exact energy eigenvalues given the ability to prepare and evolve quantum
states coherently. However, QPE requires quantum circuits of depth proportional to the desired
precision, demanding error-corrected "logical” qubits that remain beyond current technological
capabilities. This constraint motivated the development of variational approaches, most notably
the Variational Quantum Eigensolver (VQE), introduced by Peruzzo and colleagues in 2014.
VQE employs a hybrid quantum-classical strategy wherein short quantum circuits prepare trial
wavefunctions whose energies are evaluated on the quantum processor, whilst a classical

optimiser iteratively refines the circuit parameters to minimise the energy.

The field has progressed significantly since VQE's introduction. Early demonstrations
focused on the simplest molecular systems—the hydrogen molecule (Hz2) and lithium hydride
(LiH)—primarily as proof-of-concept experiments validating the algorithmic framework. These
studies established that quantum hardware could indeed encode molecular Hamiltonians and
extract meaningful energy estimates, albeit with substantial errors due to hardware noise. The
central question has now shifted from "Can we run VQE on a quantum computer?” to a more
nuanced and demanding inquiry: "What chemically meaningful accuracy is feasible for systems

of practical interest?”

This transition reflects the maturation of the field. Chemical accuracy, conventionally
defined as energy errors below 1.6 millihartree (approximately 1 kcal/mol or 4.2 kJ/mol),
represents the threshold required for quantitative predictions of reaction energetics,

conformational preferences, and spectroscopic properties. Achieving this precision on systems



larger than Hz2 requires addressing multiple interrelated challenges. First, current quantum
processors operate in the Noisy Intermediate-Scale Quantum (NISQ) regime, characterised by
qubit counts ranging from tens to low thousands, with coherence times limited to microseconds
and gate fidelities typically between 99% and 99.9%. Second, the number of qubits required to
represent molecular systems scales linearly with the size of the orbital basis, but practical
simulations demand active spaces containing tens to hundreds of orbitals. Third, accessing
excited states and simulating dynamics—essential for understanding photochemistry,

spectroscopy, and catalysis—requires algorithms beyond the basic VQE framework.

The 25-100 logical qubit regime has emerged as a critical milestone in the quantum
computing roadmap for chemistry. Logical qubits are constructed from many physical qubits
through quantum error correction codes, enabling sustained computation at error rates many
orders of magnitude below those of raw hardware. Current projections suggest that 50-100
logical qubits with error rates below 1078 would enable simulations of molecular systems
inaccessible to classical methods, including the accurate prediction of binding energies for drug-
receptor interactions, mechanism elucidation for transition metal catalysis, and characterisation
of strongly correlated materials. Major quantum hardware developers have articulated roadmaps

targeting this capability within the present decade.

The objective of this article is to provide a comprehensive and didactic treatment of the three
principal research frontiers driving progress toward quantum advantage in chemistry. Section 2
presents the theoretical foundations of variational quantum algorithms, establishing the
mathematical framework for subsequent discussion. Section 3 examines error mitigation
strategies that extract useful results from noisy hardware without full error correction, covering
Zero-Noise Extrapolation, Probabilistic Error Cancellation, and symmetry-based verification
methods. Section 4 addresses algorithms for excited states and dynamics, including Variational
Quantum Deflation, Subspace-Search VQE, quantum Equation of Motion methods, and
approaches to non-adiabatic molecular dynamics. Section 5 discusses embedding methods—DFT
embedding and Density Matrix Embedding Theory—that enable simulation of large systems by
partitioning them into quantum and classical subsystems. Section 6 synthesises recent
benchmark results, evaluating the current state of the art against the chemical accuracy standard.
Section 7 provides forward-looking discussion on hardware development, the emerging role of
artificial intelligence, and the path toward fault-tolerant quantum chemistry. Finally, Section 8

offers concluding remarks and perspectives on the timeline for practical quantum advantage.

Throughout this article, we employ British English orthography following Oxford
conventions, with mathematical notation adhering to established standards in quantum
chemistry. Vectors are denoted in boldface type (e.g., r), operators with circumflexes (e.g., H),and
quantum states using Dirac bra-ket notation (e.g., [¢)). All equations are numbered sequentially

and accompanied by explicit definitions of all symbols and variables.

2. Methodology

2.1 Theoretical Foundations of the Variational Quantum Eigensolver



The Variational Quantum Eigensolver constitutes the foundation upon which most current
quantum chemistry simulations are constructed. Understanding its mathematical structure is
essential for appreciating both its power and its limitations, as well as the various extensions

developed to address excited states and complex systems.

The electronic structure problem in quantum chemistry seeks solutions to the time-
independent Schrédinger equation for a system of NV electrons in the field of M nuclei. Within
the Born-Oppenheimer approximation, which decouples electronic and nuclear motion, the

electronic Hamiltonian takes the form:
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where V? is the Laplacian operator for electron 4, r; denotes the position vector of electron 4, R4
represents the position of nucleus A4, and Z4 is the atomic number of nucleus A. The three terms
represent, respectively, the kinetic energy of electrons, the electron—nuclear attraction, and the electron—

electron repulsion. Atomic units (A = m. = e = 4mey = 1) are employed throughout.

The variational principle provides the theoretical foundation for the VQE algorithm. For any
normalised trial wavefunction |4(6)) parameterised by a set of parameters 6, the expectation

value of the Hamiltonian provides an upper bound to the true ground state energy:

E(8) = (4(6)|H%(8)) > Ey (2)

where Ej is the exact ground state energy. Equality holds if and only if [4/(8)) equals the true ground
state wavefunction [¢g). The VQE algorithm exploits this principle by iteratively optimising 6 to

minimise E(6).

For quantum computation, the electronic Hamiltonian must be expressed in second-
quantised form using fermionic creation and annihilation operators. In a basis of K spin-orbitals

{¢p}, the Hamiltonian becomes:
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where &}, and @, are fermionic creation and annihilation operators for spin-orbital p, satisfying the
anticommutation relations {a,, a}} = 8,,. The one-electron integrals h,,, and two-electron integrals A

are computed classically from the molecular orbital basis.

Since quantum computers operate on qubits rather than fermions, a mapping must be
employed to transform the fermionic Hamiltonian into a qubit representation. The Jordan-
Wigner transformation accomplishes this by encoding the occupation number of each spin-

orbital in a corresponding qubit:
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where X, Y}, and Z,, are Pauli operators acting on qubit p. The product of Z operators (the "Jordan—
Wigner string”) enforces the correct fermionic antisymmetry. This transformation converts the

Hamiltonian into a sum of Pauli strings:
A=Y ey )
«

where each P, is a tensor product of Pauli operators (including the identity), and ¢, are real coefficients
determined by the molecular integrals. The number of terms scales as O(K*) for a system with K spin-
orbitals.

Molecular Parameterised Quantum Measurement

Hamiltonian Ansatz |(8)) Processor (WH[w)

E(6)

Update 6 Classical

Optimiser

Figure 1. Variational Quantum Eigensolver (VQE) hybrid workflow. The algorithm begins with
the molecular Hamiltonian, which is transformed into a qubit representation. A parameterised quantum
circuit (ansatz) [1(8)) is prepared on the quantum processor, and the expectation value (H) is measured
through repeated sampling. The classical optimiser updates the parameters # to minimise the energy, with
the loop continuing until convergence. This hybrid approach distributes computational burden between
quantum state preparation and classical parameter optimisation, enabling useful calculations on current

NISQ hardware.

The parameterised quantum circuit, or ansatz, prepares the trial wavefunction from an
initial reference state (typically the Hartree-Fock determinant). Chemically motivated ansitze
such as the Unitary Coupled Cluster with Singles and Doubles (UCCSD) take the form:

() = e7O-T'®)|g5) (6)

where |¢g) is the reference determinant and the cluster operator T(0) = T1 + Ty includes parameterised
single and double excitations. The UCCSD ansatz guarantees variational upper bounds and systematic

improvement toward the FCI limit, but requires deep circuits that may exceed coherence times.



Hardware-efficient ansitze provide an alternative that prioritises circuit implementability.
These circuits consist of layers of parameterised single-qubit rotations and entangling two-qubit

gates arranged in patterns that match the native connectivity of the quantum processor:
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where R;”(O;l)) represents single-qubit rotation gates in layer 7, and ENT®) denotes the entangling layer
(typically CNOT gates). While hardware-efficient ansitze can be implemented on current devices, they
may suffer from "barren plateaus’—exponentially vanishing gradients that impede optimisation in deep

circuits.

2.2 Error Mitigation Techniques

The primary obstacle to obtaining accurate results from VQE calculations on current quantum
hardware is noise. Gate errors, decoherence, and measurement errors corrupt quantum states,
leading to systematic biases in energy estimates. Quantum Error Mitigation (QEM) encompasses
techniques that improve result accuracy through classical post-processing of measurement data,

without the full resource overhead of quantum error correction.

2.2.1 Zero-Noise Extrapolation

Zero-Noise Extrapolation (ZNE) estimates the zero-noise limit of a quantum computation
by intentionally amplifying noise to multiple levels and extrapolating results to the hypothetical
noise-free case. The fundamental assumption is that the expectation value E()) varies smoothly

with noise strength A, enabling polynomial extrapolation:

E(/\) =FEy+a A+ (12)\2 + O()\3) (8)

where Ej is the target zero-noise expectation value, A is the noise scale factor (with A = 1 corresponding
to native hardware noise), and a1, as, . . . are coefficients determined from measurements at multiple noise

levels.

Noise amplification is typically achieved through unitary folding, wherein each gate U in the
circuit is replaced by the sequence U(UTU)™. On an ideal quantum computer, this sequence
implements the identity and leaves the computation unchanged. On noisy hardware, however,
the increased circuit depth proportionally amplifies gate errors, effectively implementing noise at

scale factor A = 2n + 1:

U—UUU) = x=2n+1 (9)

By measuring E(A) at several values of A (e.g., A € {1,3,5,7}) and fitting a polynomial model, the

extrapolated value E(0) provides an improved estimate of the true expectation value.
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Figure 2. Zero-Noise Extrapolation for H2 ground state energy calculation. Blue circles
represent measured energy values at increasing noise scale factors A. The dashed green line shows a
quadratic polynomial fit to the measured data. Extrapolation to A = 0 yields the ZNE estimate (red star),
which closely approximates the exact ground state energy (purple diamond). The method demonstrates
how systematic noise characterisation enables extraction of accurate results from noisy measurements,

achieving sub-millihartree accuracy for this simple system.

Digital ZNE (dZNE) extends these concepts to operate at the gate level without requiring
low-level hardware access. Recent benchmarks have demonstrated error reductions of up to 24-
fold using optimised dZNE protocols. Purity-Assisted ZNE (pZNE) improves upon standard
approaches by utilising measurements of state purity to better model the noise dependence,

particularly when error rates deviate from assumptions.

2.2.2 Probabilistic Error Cancellation

Probabilistic Error Cancellation (PEC) provides an alternative approach that, in principle,
produces unbiased estimates by representing the ideal noise-free operation as a quasi-
probabilistic sum of noisy operations. For a noise channel £ affecting gate G, the noisy gate

implements € o G rather than G alone. PEC constructs a decomposition:

G = ’}’ZQJ‘BJ‘ (10)
J

where {B;} is a set of physically implementable operations (basis operations), g; are real coefficients
satisfying > q;| = 1, and v = 7, |q;| > 1 is the cost factor. The ideal gate is recovered by sampling

operations according to |g;| and weighting measurement outcomes by v - sign(g;).

The sampling overhead of PEC scales exponentially with circuit depth as 24, where d is the
number of gates. This overhead represents the fundamental cost of error mitigation without
error correction. Recent developments have focused on reducing this overhead through various

strategies:



® Feed-Forward PEC (FFPEC): Accounts for noise introduced by recovery operations

themselves, improving accuracy without additional overhead.

® Control Variates: Statistical techniques that reduce variance in the estimator, achieving

sample reductions exceeding 50% in benchmarks.

¢ Compilation-Informed PEC (CIPEC): Optimises the decomposition by considering the

compiled circuit structure, reducing both physical and logical error contributions.

2.2.3 Symmetry Verification

Symmetry verification exploits the conservation laws inherent to molecular systems to detect
and discard erroneous measurement outcomes. Physical states must respect symmetries of the
Hamiltonian, including particle number conservation and spin symmetry. Measured states

violating these symmetries are unambiguously erroneous and can be post-selected:

Nh/)physical) - Ne "‘/)physical> (11)

where N =Y aba, is the number operator and N, is the correct electron count. Any measurement

outcome inconsistent with N, electrons results from hardware errors and is rejected.

Implementation proceeds by measuring the symmetry operators alongside the Hamiltonian.
For particle number, this requires measuring the total qubit occupation. For spin symmetry,
additional ancilla qubits and controlled operations may be required to project onto the correct

S%and S, sectors:

(| HTgpmn|90)
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where Tl is the projector onto the symmetry-respecting subspace. This post-selection effectively filters
out a substantial fraction of errors, often achieving order-of-magnitude improvements with minimal

additional circuit overhead.

Symmetry verification combines effectively with other mitigation techniques. The discarded
data from symmetry-violating measurements can inform error extrapolation schemes, converting

waste into additional information about the noise structure.

2.3 Algorithms for Excited States

Whilst ground state energies provide thermodynamic information, the chemical phenomena of
greatest interest—photochemistry, spectroscopy, and electron transfer—involve electronic
excited states. Several quantum algorithms have been developed to access the excited state

manifold.

2.3.1 Variational Quantum Deflation

Variational Quantum Deflation (VQD) extends VQE to compute excited states by sequential

optimisation with orthogonality constraints. After obtaining the ground state [¢g), each



subsequent excited state [¢;) is found by minimising a modified cost function that penalises

overlap with all previously determined states:

k—1

Li(6) = (W(0)| H(6)) + Y _ Bl (w;[%(6))[? (13)

J=0

where 3; > 0 are penalty coefficients chosen to be larger than the energy gaps, ensuring that overlap with
lower states incurs an energy penalty sufficient to drive orthogonalisation. The overlap terms |(1)1(6))

are measured using the SWAP test or destructive swap methods.

VQD has been successfully applied to compute multiple excited states of small molecules,
including the potential energy curves of H2 and LiH. Recent improvements include Charge-
Preserving VQD (CPVQD), which incorporates charge conservation constraints to improve
efficiency, and VQE under Automatically-Adjusted Constraints (VQE/AC), which adaptively

tunes penalty parameters during optimisation.

2.3.2 Subspace-Search Variational Quantum Eigensolver

Subspace-Search VQE (SSVQE) provides a more efficient approach by computing multiple
cigenstates simultaneously rather than sequentially. The algorithm prepares k mutually
orthogonal input states {|¢;)}* |, applies the same parameterised unitary U(8) to each, and

minimises a weighted sum of their energies:
k ~
Losvap(8) = 3 iU (0)AU(0) ) (14)
i—1

where w; are positive weights satisfying w1 > w» > - -+ > wy. The weight hierarchy ensures that the
optimiser prioritises minimising lower-energy states. Since unitary transformations preserve orthogonality,

the output states {U(0)|¢;) } remain mutually orthogonal and converge to the k lowest eigenstates.
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Figure 3. Excited state energies computed using Variational Quantum Deflation (VQD)
compared with exact values. Bar heights represent exact energies for the ground state (So), first excited
state (S1), and second excited state (S2) across four molecular systems of increasing complexity. Black
crosses indicate VQD results obtained using error-mitigated quantum simulations. The close agreement
demonstrates that current quantum methods can accurately resolve multiple electronic states, with errors

remaining below chemical accuracy thresholds for the smaller systems.

2.3.3 Quantum Equation of Motion Method

The quantum Equation of Motion (QEOM) method computes excitation energies as energy
differences from a reference ground state, following a strategy analogous to classical equation-of-
motion coupled cluster theory. After preparing the ground state [tg) via VQE, excitation

operators O,, are applied to generate trial excited states:

|"/’ﬂ> = O#W’O) (15)

where O# may include single, double, or higher excitations from occupied to virtual orbitals. The

excitation energies are obtained by solving the generalised eigenvalue problem:

Mc = wSc (16)

where M, = <¢0|0L[H ,0,][to) and Sy = (¢0\OLOV|¢0) are matrices whose elements are measured on

the quantum computer. The eigenvalues w correspond to excitation energies relative to the ground state.

The qEOM approach offers several advantages for NISQ implementation. The required
matrix elements involve commutators that partially cancel systematic errors, providing inherent
noise resilience. The quantum self-consistent EOM (g-sc-EOM) variant ensures that physical

conditions such as the Hellmann-Feynman theorem are satisfied, further improving accuracy.
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2.4 Embedding Methods for Large Systems

The qubit requirements for molecular simulation scale linearly with the number of orbitals in
the basis set, rapidly exceeding the capacity of current hardware for chemically relevant systems.
Embedding methods address this challenge by partitioning the system into a small "active” region

treated with the quantum computer and a larger "environment” handled classically.

2.4.1 Active Space Selection

The active space approximation recognises that strong correlation effects are typically
localised in a subset of molecular orbitals, while the remaining electrons can be described
adequately at the mean-field level. For a molecule with N electrons and K orbitals, selecting an

active space of n electrons in m orbitals reduces the problem from 2K qubits to 2m qubits:

[9) = |core) ® [Yactive(1e, M0)) @ [Pvirtual) (17)

where [1)core) represents doubly occupied core orbitals, [active(ne, mo)) is the correlated active space
wavefunction with n, active electrons in m,, active orbitals, and |t)yirtuar) accounts for virtual orbital

contributions at the perturbative level.

Systematic benchmarking has established guidelines for active space selection in quantum
drug discovery applications. A (6e, 6o) active space, requiring 12 qubits, has been shown
sufficient for capturing essential correlation effects in many pharmaceutical molecules, whilst
larger active spaces of (10e, 100) or (12e, 120) provide improved accuracy for transition metal

complexes.

Environment (DFT)

=== Active Space (Quantum)

Active Space
(6e, 60) - 12 qubits

Figure 4. DFT embedding scheme for quantum-classical partitioning of molecular systems.
Molecular orbitals are partitioned into an active space (red, inner region) treated with high-accuracy
quantum methods and an environment (blue, outer orbitals) handled with classical Density Functional
Theory. The dashed boundary indicates the embedding interface. A typical (6e, 60) active space requires
only 12 qubits, enabling simulation of drug-like molecules on near-term hardware that would otherwise

require over 100 qubits for full treatment.
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2.4.2 Density Matrix Embedding Theory

Density Matrix Embedding Theory (DMET) provides a rigorous framework for constructing
effective embedding problems. The system is partitioned into a fragment of interest and its
environment. A "bath” is constructed from environmental orbitals that hybridise with the

fragment, and the combined fragment-plus-bath system defines the embedded problem:

Hemb = ﬁfra.g + Hbath + ﬁfrag—bath + ,U'Nfrag (18)

where Hgag contains one- and two-electron integrals localised on the fragment, Hyasn represents the bath
contribution, Hpaspam describes fragment-bath coupling, and y is a chemical potential adjusted self-

consistently to maintain correct electron count.

The bath construction employs the Schmidt decomposition of the global Hartree—Fock
determinant. For a fragment spanning M orbitals, the bath also comprises M orbitals, resulting
in an embedded problem of 2M qubits—independent of the total system size. This remarkable
property enables simulation of extended systems, including periodic solids, using fixed quantum

resources.

2.4.3 DFT Embedding

DFT embedding represents a practical and widely adopted implementation of embedding
concepts. The environment is treated with Kohn-Sham DFT, and an effective potential is

constructed to account for the environment's influence on the active region:

ﬁeff = ﬁactive + IA/emb (19)

where Hactive is the full Hamiltonian restricted to the active space, and Ve, is the embedding potential
derived from the DFT density of the environment. This potential includes electrostatic, exchange-

correlation, and kinetic energy contributions from the surrounding electrons.

DFT embedding has been successfully applied to study spin defects in diamond (nitrogen-
vacancy centres, which are candidates for quantum bits), metal cluster catalysis, and enzyme
active sites. The method reduces qubit requirements by factors of 5-10 whilst maintaining

chemical accuracy for localised properties.

12
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Figure 5. Benchmark comparison of energy errors across molecular systems of increasing

Absolute Error (mHa)
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complexity. Three methods are compared: classical CCSD(T) (blue), VQE without error mitigation
(orange), and VQE with combined ZNE and symmetry verification (green). The horizontal red dashed
line indicates chemical accuracy (1.6 mHa). Logarithmic scale emphasises the order-of-magnitude
improvement achieved by error mitigation. For small molecules, mitigated VQE approaches or surpasses
classical accuracy, while larger molecules present ongoing challenges requiring further algorithmic

development.

3. Results

Recent benchmarks conducted between 2023 and 2025 demonstrate substantial progress in
quantum chemistry simulations, with systems extending well beyond the foundational Hz2 and
LiH molecules that dominated early studies. These results provide empirical evidence for the

capabilities and limitations of current quantum approaches.

3.1 Molecular Ground States

Comprehensive benchmarks of hardware-efficient ansitze for VQE have been performed
across a range of molecular systems including BeHz2, H20, CHa, and N2. For H20 with a
minimal STO-3G basis (14 qubits), VQE with ZNE achieved errors of 4.1 mHa without full
error correction—within 2.6x of chemical accuracy. The N2 molecule, notorious for its strong
triple-bond correlation, showed errors of 8.2 mHa using combined mitigation strategies,

demonstrating that multi-reference character remains a significant challenge.

Aluminium cluster simulations (Al2 through Ala) have explored the application of VQE to
metallic bonding, relevant to understanding bulk metal properties. These studies revealed that
hardware-efficient ansitze require careful layer depth selection: too few layers provide
insufficient expressibility, while excessive depth introduces accumulated gate errors that

overwhelm the signal.

3.2 Excited States and Spectroscopy

13



VQD implementations have successfully computed the first several excited states of
benchmark molecules with errors comparable to ground state calculations. For LiH, excitation
energies to the first three singlet excited states agreed with FCI reference values to within 10
mHa, sufficient for qualitative assignment of spectroscopic features. The qEOM method
demonstrated superior noise resilience, achieving excitation energy errors below 5 mHa for small

molecules under realistic noise models.

Applications to photochemically relevant systems have begun to emerge. Calculations on
model photosensitisers and TADF (thermally activated delayed fluorescence) emitter molecules
have shown that quantum methods can correctly order excited states and predict energy gaps
governing emission properties, although quantitative accuracy remains limited by hardware

constraints.

3.3 Reaction Energetics

A landmark achievement has been the simulation of the Diels—Alder reaction pathway using
VQE. This pericyclic reaction, involving the cycloaddition of a diene and dienophile, represents a
genuine test of chemical utility. The calculated activation energy agreed with classical CCSD(T)
benchmarks to within 2 kcal/mol across the reaction coordinate, demonstrating that quantum

methods can address reaction mechanisms relevant to synthetic chemistry.

Extended hydrogen chains (He through Hi2) have served as model systems for understanding
strong correlation in one-dimensional systems relevant to conducting polymers. These
calculations revealed that current NISQ devices can capture the essential metal-insulator
transition physics with appropriate error mitigation, although quantitative band gaps require

further refinement.

14
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Figure 6. Quantum resource requirements and hardware development roadmap. (Left) Qubit
requirements for various molecular systems comparing full simulation (orange) versus embedded
approaches (green). Embedding reduces requirements by factors of 3-10x, enabling simulation of drug-
like molecules on near-term devices. (Right) Projected error rate evolution for physical and logical qubits,
with the chemistry threshold (1078) indicated. The intersection of logical qubit error rates with this

threshold around 2028-2030 marks the anticipated onset of fault-tolerant quantum advantage for

chemistry applications.

4, Discussion

4.1 Assessment of Current Capabilities

The results surveyed in this article paint a nuanced picture of quantum chemistry's present
state. On the optimistic side, the field has progressed from proof-of-concept demonstrations to
scientifically meaningful calculations within roughly a decade. The combination of VQE with
sophisticated error mitigation can achieve chemical accuracy for small molecules on current
hardware, validating the fundamental algorithmic approach. Excited state methods have matured

to the point where spectroscopic properties can be computed with qualitative reliability.

However, significant challenges remain. The scaling of error mitigation overhead with system
size represents a fundamental limitation. ZNE requires polynomial extrapolation that becomes
unreliable for deep circuits, while PEC sampling costs grow exponentially with gate count. For
systems requiring more than approximately 50 two-qubit gates, current mitigation strategies
struggle to extract accurate results. This constraint effectively limits NISQ chemistry to systems
that can be encoded in fewer than 20-30 qubits with shallow ansitze—a regime that classical

methods can often address adequately.

The choice of ansatz presents a persistent dilemma. Chemically motivated ansitze like
UCCSD provide systematic improvability but require circuit depths exceeding hardware
capabilities. Hardware-efficient ansitze fit device constraints but may exhibit barren plateaus,

lack chemical interpretability, and require extensive hyperparameter tuning. Adaptive methods

15



such as ADAPT-VQE offer a middle ground but demand iterative circuit growth that complicates

experimental implementation.

4.2 Comparative Advantages and Limitations

Quantum approaches offer distinct advantages for specific problem classes. Strongly
correlated systems—where classical single-reference methods fail and multi-reference methods
become combinatorially expensive—represent the clearest opportunity for quantum advantage.
Transition metal complexes, actinide chemistry, and certain biradical intermediates fall into this
category. For such systems, even modest quantum resources may outperform classical

alternatives.

Conversely, weakly correlated systems amenable to CCSD(T) treatment are unlikely targets
for near-term quantum advantage. The systematic error of CCSD(T) for main-group
thermochemistry (typically 1-2 kJ/mol) exceeds what current quantum hardware can reliably
achieve for systems of comparable size. The crossover point—where quantum methods become
competitive—depends critically on continued hardware improvement and algorithm

development.

Embedding methods substantially extend the reach of quantum simulation by enabling
treatment of realistic systems. However, embedding introduces approximations whose errors may
exceed those of the quantum calculation itself. The interface between quantum-treated and
classically-treated regions requires careful handling to avoid artefacts. Active space selection,
while guided by chemical intuition and systematic procedures, ultimately represents an

uncontrolled approximation whose validity must be verified for each application.

4.3 The Role of Artificial Intelligence

The integration of artificial intelligence and machine learning with quantum chemistry
simulation has emerged as a particularly promising research direction. Machine learning models

are being employed across multiple aspects of the quantum simulation workflow:

Ansatz optimisation: Reinforcement learning algorithms can navigate the discrete space of
circuit architectures to identify problem-specific ansitze that balance expressibility against
circuit depth. Neural network-based variational states, while not directly implementable on
quantum hardware, can guide the design of quantum circuits capturing essential correlation

physics.

Error mitigation: Machine learning models trained on calibration data can predict and
correct for hardware errors more accurately than physics-based noise models. Neural network
decoders have demonstrated improved performance over traditional maximum-likelihood

decoding for error correction codes, suggesting analogous applications in error mitigation.

Classical pre-processing: Neural network potentials trained on high-level quantum
chemistry data can identify molecular configurations requiring quantum treatment, enabling
efficient sampling of conformational space. This "classical-surrogate-then-quantum-refinement”

workflow maximises the value extracted from limited quantum resources.
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Hybrid quantum-classical learning: Variational quantum algorithms can be viewed as
parameterised quantum models amenable to training with classical optimisation. Techniques
from deep learning—including adaptive learning rates, momentum, and regularisation—improve
VQE convergence. Conversely, quantum circuits may serve as feature extractors within larger

classical machine learning architectures.

The synergy between Al and quantum computing for chemistry is likely to deepen as both
fields mature. Large language models may eventually assist in experimental design and
interpretation, whilst quantum computers provide training data for quantum-native machine

learning models.

4.4 Path to Fault-Tolerant Quantum Chemistry

The transition from NISQ to fault-tolerant quantum computing represents the critical
inflection point for practical quantum chemistry. Current roadmaps from major hardware
developers project achievement of 25-100 logical qubits with error rates below 1078 within the

2028-2032 timeframe. Achieving these specifications requires:

* Improved physical qubit coherence: T2 times must extend from current microseconds to

milliseconds or longer, reducing the raw error rate requiring correction.

* High-fidelity gates: Two-qubit gate errors must decrease from current 107>~ 107" to

10~* or below for efficient error correction encoding.

® Scalable architectures: Modular designs with quantum interconnects enable scaling
beyond single-chip limits whilst maintaining high connectivity.
® Real-time decoding: Error correction requires decoding syndrome measurements faster

than error accumulation, demanding specialised classical co-processors.

The emergence of carly fault-tolerant quantum computers will not immediately render
NISQ algorithms obsolete. A transitional period will likely see hybrid approaches combining
partial error correction with error mitigation, extracting maximum utility from intermediate-

capability devices.

4.5 Timeline Considerations

Extrapolating from current progress, several milestones can be anticipated:

Near-term (2025-2027): Continued refinement of error mitigation enabling chemical
accuracy for 30-50 qubit systems. Embedding methods applied to pharmacologically relevant
molecules. First demonstrations of quantum advantage for specific strongly correlated systems,

likely transition metal dimers or model catalyst active sites.

Medium-term (2028-2032): Achievement of early logical qubits with practical error rates.
Routine simulation of active spaces containing 20-30 correlated orbitals. Integration of
quantum chemistry into drug discovery pipelines for lead optimisation. Resolution of

benchmark problems (e.g., FeMoco binding energies) currently intractable classically.

Long-term (2033+): Fault-tolerant quantum computers with hundreds of logical qubits.

Full treatment of enzyme active sites, extended conjugated systems, and heterogeneous catalysis.
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Quantum chemistry becomes a standard tool comparable to current DFT status.

These projections carry substantial uncertainty. Hardware development may accelerate
through unexpected breakthroughs or decelerate due to fundamental obstacles. Algorithmic
innovations could compress the timeline, whilst unforeseen challenges might extend it.
Nonetheless, the trajectory is unmistakably toward practical quantum advantage within the

coming decade.

S. Conclusion

Quantum computing for chemistry stands at an inflection point between proof-of-concept
demonstrations and practical scientific utility. The convergence of advances in error mitigation,
excited state algorithms, and embedding methods has extended the frontier of quantum
simulation from trivial two-electron systems to molecules of genuine chemical interest. Recent
benchmarks achieving chemical accuracy for small molecules validate the fundamental viability

of the variational quantum eigensolver paradigm.

The challenge ahead is one of scale. Current NISQ devices, whilst capable of encoding
meaningful chemical problems, lack the coherence and gate fidelity to solve them with
consistent reliability. Error mitigation provides a bridge, but its effectiveness diminishes with
increasing system size. The ultimate solution lies in fault-tolerant quantum computing, which
promises to suppress errors to levels where complex, classically intractable simulations become

routine.

The 25-100 logical qubit regime represents the critical milestone on this journey. Hardware
roadmaps suggest this capability will materialise within the current decade, potentially
unlocking applications in drug design, catalyst development, and materials science that have long
remained beyond classical reach. The integration of artificial intelligence promises to accelerate
progress by optimising algorithms, mitigating errors, and guiding the efficient deployment of

quantum resources.

For practitioners in computational chemistry, the present era offers opportunities for
foundational contributions. Algorithmic innovations, benchmark studies, and application
development all advance the field. Whilst quantum advantage for general chemical problems
remains a future prospect, strategic deployment of quantum methods for strongly correlated
systems may yield near-term dividends. The prudent approach combines measured optimism

about quantum chemistry's potential with rigorous validation against classical benchmarks.

The vision articulated by Feynman four decades ago—of quantum computers simulating
nature's quantum systems—is transitioning from aspiration to engineering reality. The
molecules governing life, catalysis, and advanced materials will yield their secrets to quantum

interrogation. The only questions remaining concern timing and tactics, not feasibility.

6. Python Implementation

The following Python code demonstrates a simplified VQE implementation for the H2 molecule

using the Qiskit framework. This pedagogical example illustrates the core algorithmic



components discussed throughout this article, including Hamiltonian construction, ansatz

preparation, and variational optimisation.

numpy np
scipy.optimize minimize

np.array([[1, 0], [0, 1]], dtype=complex)
np.array([[0, 1], [1, 0]], dtype=complex)
np.array([[0, -1j], [1j, 0]], dtype=complex)
np.array([[1, 0], [0, -1]], dtype=complex)

kron_n(*matrices):
"""Compute tensor product of multiple matrices."""
result = matrices[0]
m matrices[1:]:
result = np.kron(result, m)
result

build_h2_hamiltonian(bond_length=0.735):

nmnn

Build the H2 Hamiltonian in qubit representation.

Uses precomputed coefficients for STO-3G basis at equilibrium.

Parameters:

bond_length: H-H distance in Angstroms (default: equilibrium)

Returns:
H: 4x4 Hamiltonian matrix (2 qubits)

non

f240]
gl
g2
g3
g4
g5

kron_n(I,
kron_n(ZzZ,
kron_n(I,
kron_n(Z,
kron_n(X,
kron_n(Y,

ry_gate(theta):

"""Single-qubit Y-rotation gate."""

c, s = np.cos(theta/2), np.sin(theta/2)
np.array([[c, -s], [s, c]], dtype=complex)

rz_gate(theta):
"""Single-qubit Z-rotation gate."""
np.array([[np.exp(-1j*theta/2), 0],
[0, np.exp(1lj*theta/2)]], dtype=complex)

cnot_gate():




"""Two-qubit CNOT gate."""
np.array([[1,0,0,0], [0,1,0,0],
[6,0,0,1], [0,0,1,0]], dtype=complex)

hardware_efficient_ansatz(params):

Hardware-efficient ansatz for 2 qubits.
Structure: Ry(6o)-Ry(61)-CNOT-Ry(02)-Ry(03)

Parameters:

params: Array of 4 rotation angles

Returns:
Unitary matrix representing the ansatz circuit

kron_n(ry_gate(params[0]), ry_gate(params[1l]))

cnot_gate()

kron_n(ry_gate(params[2]), ry_gate(params[3]))

U3 @ U2 @ U1

compute_energy(params, hamiltonian, initial_state):

nun

Compute expectation value (Y (8)|H|w(B)).

Parameters:
params: Variational parameters
hamiltonian: Qubit Hamiltonian matrix
initial_state: Reference state vector

Returns:
Energy expectation value (real)

hardware_efficient_ansatz(params)
= U @ initial_state

energy = np.real(psi.conj().T @ hamiltonian @ psi)
energy

run_vge (hamiltonian, num_params=4, num_restarts=5):

non

Execute VQE optimisation with multiple random restarts.

Parameters:
hamiltonian: Qubit Hamiltonian
num_params: Number of variational parameters
num_restarts: Number of optimisation restarts

Returns:

optimal_energy: Minimised energy
optimal_params: Optimal variational parameters

initial_state = np.array([1l, 0, 0, 0], dtype=complex)

best_energy = np.inf




best_params =

range (num_restarts):

params® = np.random.uniform(-np.pi, np.pi, num_params)

result = minimize(
compute_energy,
paramsoO,
args=(hamiltonian, initial_state),
method="'COBYLA',
options={'maxiter': 500}

result.fun < best_energy:
best_energy = result.fun
best_params = result.x

best_energy, best_params

__name__ == "__main__":
print("="%60)
print("Variational Quantum Eigensolver for Hz Molecule")

print("="%60)

H = build_h2_hamiltonian()

eigenvalues, = np.linalg.eigh(H)

exact_ground_state = eigenvalues[0]

vqge_energy, optimal_params = run_vqe(H)

print(f"\nExact ground state energy: {exact_ground_state:.6f} Hartree")
print(f"VQE computed energy: {vge_energy:.6f} Hartree")
print(f"Absolute error: {abs(vge_energy - exact_ground_state
print(f"Chemical accuracy (1.6 mHa): {'ACHIEVED' 1if abs(vge_energy - exad
print(f"\nOptimal parameters: {optimal_params}")

This implementation demonstrates the essential VQE workflow: Hamiltonian construction
using precomputed molecular integrals, ansatz circuit definition with parameterised gates,
energy evaluation through matrix-vector multiplication (simulating quantum measurement),
and classical optimisation using the COBYLA algorithm. In practice, this calculation achieves

sub-millihartree accuracy, validating the variational approach for this minimal system.
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