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Abstract

The quantum mechanical treatment of molecular rotations and vibrations represents
one of the fundamental pillars of modern molecular spectroscopy and quantum
chemistry (Atkins & Friedman, 2011). This comprehensive analysis examines the
theoretical foundations underlying rotational and vibrational motion in molecules,
with particular emphasis on the coupling between these two degrees of freedom.
Beginning with the rigid rotor and harmonic oscillator approximations (Wilson et al.,
1980), we develop the mathematical framework necessary to understand molecular
energy levels and spectroscopic transitions. The rigid rotor model provides an
excellent first approximation for rotational motion, yielding energy levels proportional
to J(J+1), where J is the rotational quantum number (Dennison, 1926). Similarly, the
quantum harmonic oscillator describes vibrational motion with equally spaced energy
levels characterised by the vibrational quantum number v (Sathyanarayana, 2015).
However, the true complexity of molecular dynamics emerges when considering the
coupling between rotational and vibrational motion, leading to centrifugal distortion
effects and the breakdown of the Born-Oppenheimer approximation (Pekeris, 1934).
Through detailed mathematical derivations and computational visualisations, we
demonstrate how rotational-vibrational coupling manifests in molecular spectra and
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influences molecular behaviour. The implications extend beyond fundamental
spectroscopy to applications in quantum control, molecular cooling, and quantum
information processing (Koch et al.,, 2019). Our analysis reveals that whilst the
independent treatment of rotation and vibration provides valuable insights, a
complete understanding of molecular dynamics requires consideration of their
intricate coupling, particularly at higher energy levels where anharmonic effects
become significant (Mills & Robiette, 1985).

Keywords: molecular rotation, molecular vibration, quantum mechanics,
spectroscopy, rotational-vibrational coupling, harmonic oscillator, rigid rotor,
centrifugal distortion

1. Introduction

The quantum mechanical description of molecular motion represents one of the most
elegant and successful applications of quantum theory to chemical systems. Since the
pioneering work of Dennison (1926) on the rotational motion of molecules and the
subsequent development of vibrational spectroscopy theory by Wilson, Decius, and
Cross (1980), our understanding of molecular dynamics has evolved into a
sophisticated framework that underpins modern molecular spectroscopy, quantum
chemistry, and emerging fields such as quantum control and molecular cooling.

Molecular motion can be decomposed into several distinct degrees of freedom:
translational motion of the centre of mass, rotational motion about the centre of mass,
vibrational motion involving changes in bond lengths and angles, and electronic
motion (Atkins & Friedman, 2011). The beauty of quantum mechanics lies in its ability
to treat each of these motions as quantised phenomena, with discrete energy levels
that give rise to the characteristic spectroscopic signatures observed in experimental
measurements. The Born-Oppenheimer approximation, which separates electronic
and nuclear motion based on the vast difference in their masses, provides the
theoretical foundation for treating rotational and vibrational motion independently of
electronic transitions, at least as a first approximation (Atkins & Friedman, 2011).

The rigid rotor model, first developed in the early days of quantum mechanics by
Dennison (1926), treats molecular rotation as the motion of a rigid body with a fixed
moment of inertia. This approximation yields the familiar energy level expression E_J =
BJ(J+1), where B is the rotational constant and J is the rotational quantum number.
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The success of this model in explaining the gross features of rotational spectra
established quantum mechanics as the correct theoretical framework for molecular
systems. However, the rigid rotor approximation breaks down when considering the
coupling between rotational and vibrational motion, leading to phenomena such as
centrifugal distortion and the need for more sophisticated theoretical treatments
(Pekeris, 1934).

Parallel to the development of rotational theory, the quantum mechanical treatment
of molecular vibrations emerged from the classical harmonic oscillator model. The
quantum harmonic oscillator, with its equally spaced energy levels E_v = h w(v + 1/2),
where v is the vibrational quantum number and w is the vibrational frequency,
provides an excellent first approximation for small amplitude vibrations about
equilibrium bond lengths (Kastrup, 2007). The zero-point energy, h w/2, represents a
purely quantum mechanical effect with no classical analogue, highlighting the
fundamental differences between classical and quantum descriptions of molecular
motion.

The harmonic oscillator model finds its most direct application in infrared
spectroscopy, where transitions between vibrational energy levels give rise to
absorption bands characteristic of specific molecular bonds and functional groups
(Sathyanarayana, 2015). The selection rule Av = +1 for harmonic oscillators leads to a
single fundamental frequency for each vibrational mode, greatly simplifying the
interpretation of vibrational spectra. However, real molecular potentials deviate from
the harmonic approximation, particularly at higher vibrational energies, leading to
anharmonic effects that manifest as overtones, combination bands, and frequency
shifts in experimental spectra (Schrader, 2008).

The true complexity of molecular dynamics emerges when considering the coupling
between rotational and vibrational motion. This coupling arises from several physical
effects: the dependence of the moment of inertia on vibrational state, the Coriolis
coupling between rotational and vibrational angular momenta, and the breakdown of
the rigid rotor approximation at high rotational energies (Mills & Robiette, 1985). The
most commonly observed manifestation of rotational-vibrational coupling is
centrifugal distortion, where the effective bond length increases with rotational energy
due to centrifugal forces, leading to a decrease in rotational constants and the
appearance of additional terms in the energy level expression.

Pekeris (1934) provided one of the first comprehensive treatments of rotation-vibration
coupling in diatomic molecules, demonstrating how the coupling leads to a complex



energy level structure that cannot be understood through independent treatment of
rotation and vibration. This work laid the foundation for modern rovibrational
spectroscopy, which has become an indispensable tool for molecular structure
determination and the study of intermolecular interactions.

The mathematical framework for describing rotational-vibrational coupling has
evolved considerably since these early works. Modern treatments employ
sophisticated Hamiltonian formulations that account for the full complexity of
molecular motion whilst maintaining computational tractability (Atkins & Friedman,
2011). The effective Hamiltonian approach, developed through perturbation theory,
allows for the systematic inclusion of higher-order coupling terms whilst preserving
the physical insight provided by simpler models.

Contemporary applications of rotational-vibrational coupling theory extend far beyond
traditional spectroscopy. In the field of quantum control, the ability to manipulate
molecular rotational and vibrational states with precisely tailored electromagnetic
fields has opened new possibilities for controlling chemical reactions and creating
exotic quantum states. Koch, Lemeshko, and Sugny (2019) have provided a
comprehensive review of quantum control of molecular rotation, highlighting
applications ranging from molecular alignment and orientation to quantum
information processing and simulation.

The development of ultracold molecular gases has created new opportunities for
studying rotational-vibrational coupling in regimes previously inaccessible to
experimental investigation. In these systems, the thermal energy is comparable to or
smaller than the spacing between rotational energy levels, allowing for the
preparation and manipulation of molecules in specific rotational and vibrational states
(Koch et al., 2019). This has led to new insights into fundamental aspects of molecular
physics and opened possibilities for applications in precision metrology and quantum
simulation.

Molecular cooling techniques, including laser cooling and sympathetic cooling with
ultracold atoms, have enabled the creation of molecular samples with temperatures in
the microkelvin range. At these temperatures, the thermal population is concentrated
in the lowest rotational and vibrational states, providing ideal conditions for studying
quantum effects and implementing quantum control protocols (Koch et al., 2019). The
ability to prepare molecules in specific rovibrational states has also enabled new types
of precision measurements, including tests of fundamental symmetries and searches
for new physics beyond the Standard Model.



The field of molecular spectroscopy continues to benefit from advances in both
experimental techniques and theoretical methods. High-resolution spectroscopy with
frequency combs and cavity-enhanced techniques has pushed the precision of
molecular measurements to unprecedented levels, revealing subtle effects of
rotational-vibrational coupling that were previously unobservable (Schrader, 2008).
Simultaneously, advances in computational quantum chemistry have enabled ab initio
calculations of molecular potential energy surfaces with sufficient accuracy to predict
spectroscopic observables to experimental precision (Jacob & Reiher, 2009).

The interplay between theory and experiment in molecular physics exemplifies the
power of the quantum mechanical framework. Theoretical predictions guide
experimental investigations, whilst experimental observations drive the development
of more sophisticated theoretical models (Atkins & Friedman, 2011). This symbiotic
relationship has led to a deep understanding of molecular behaviour that continues to
reveal new phenomena and applications.

Looking towards the future, several emerging areas promise to further expand our
understanding of molecular rotations and vibrations. The development of quantum
technologies based on molecular systems requires precise control over rovibrational
states and their coupling (Koch et al., 2019). Molecular qubits, which encode quantum
information in rotational or vibrational degrees of freedom, offer unique advantages
for quantum computing and communication applications. The long coherence times
and rich level structure of molecular systems make them attractive candidates for
quantum memory and quantum simulation applications.

The study of molecules in strong electromagnetic fields represents another frontier
where rotational-vibrational coupling plays a crucial role. In intense laser fields, the
coupling between different degrees of freedom can lead to novel phenomena such as
molecular alignment, orientation, and even bond breaking and formation (Koch et al.,
2019). Understanding these processes requires sophisticated theoretical treatments
that go beyond the perturbative regime and account for the full nonlinear response of
molecular systems to external fields.

Environmental effects on molecular rotations and vibrations constitute yet another
active area of research. The interaction of molecules with their surroundings, whether
in solution, on surfaces, or in biological systems, can significantly modify rotational
and vibrational dynamics (Kato & Tanimura, 2002). These effects are particularly
important for understanding molecular behaviour in complex environments and for
developing applications in areas such as catalysis, drug design, and materials science.



The mathematical beauty of quantum mechanics, combined with its predictive power
for molecular systems, continues to inspire new theoretical developments and
experimental investigations (Atkins & Friedman, 2011). The framework established by
the early pioneers of quantum mechanics remains robust and continues to provide
insights into molecular behaviour across a wide range of conditions and applications.
As we advance into an era of quantum technologies and precision measurements, the
fundamental understanding of molecular rotations and vibrations will undoubtedly
play an increasingly important role in shaping our technological capabilities and
scientific understanding.

This comprehensive analysis aims to provide a thorough examination of the
theoretical foundations underlying molecular rotations and vibrations, with particular
emphasis on their coupling and its manifestations in molecular spectra and dynamics.
Through detailed mathematical derivations, computational visualisations, and
discussion of contemporary applications, we seek to illuminate both the fundamental
physics and the practical implications of these quantum mechanical phenomena.

2. Methodology

2.1 Quantum Mechanical Framework for Molecular Rotation

The quantum mechanical treatment of molecular rotation begins with the classical
description of a rigid body rotating about its centre of mass (Dennison, 1926). For a
diatomic molecule, the classical rotational kinetic energy is given by:

1
Trot = _Iwz
2

where I is the moment of inertia and w is the angular velocity. In quantum mechanics,
the angular momentum operator L replaces the classical angular momentum L = [w
, leading to the quantum mechanical rotational Hamiltonian (Atkins & Friedman, 2011):
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The eigenvalue equation for this Hamiltonian is:
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where YJ*(6, ¢) are the spherical harmonic functions that serve as the rotational
wavefunctions (Atkins & Friedman, 2011). The angular momentum squared operator
has eigenvalues L2 = h?J(J + 1), where J is the rotational quantum number taking
integer values J = 0, 1, 2, .... This leads to the fundamental expression for rotational
energy levels established by Dennison (1926):

RJ(J +1
E; = RIJ+1) _ BheJ(J + 1)
21
where the rotational constant B is defined as:
B2 h
B = 2The 8m2lc

The moment of inertia for a diatomic molecule is expressed in terms of the reduced
mass p and the equilibrium bond length 7, (Wilson et al., 1980):

I, = pr?

where the reduced mass is:

T
M=
my + me
For polyatomic molecules, the situation becomes more complex due to the presence of
multiple principal axes of rotation (Atkins & Friedman, 2011). The rotational

Hamiltonian for an asymmetric top molecule is:

. J: gz g2
Hro — a b c
YA + 21, + oI,

where I, I, and I, are the principal moments of inertia, and ja, jb, and jc are the
components of the angular momentum operator along the principal axes.

2.2 Quantum Harmonic Oscillator for Molecular Vibrations

The quantum mechanical treatment of molecular vibrations begins with the classical
harmonic oscillator potential (Wilson et al., 1980):

1
V(z) = 514;:(;2

where k is the force constant and z is the displacement from equilibrium. The classical
frequency of oscillation is:
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The quantum mechanical Hamiltonian for the harmonic oscillator is (Kastrup, 2007):

A R d? 1
vib = —— — + —k?
2udz? 2

This can be rewritten in terms of the dimensionless coordinate §{ = x /5> (Atkins &
Friedman, 2011):
- 1 d? 1
Hyp = b — 5= + 5€
b ( 2ag T3 >
The eigenvalue equation:

I:Ivib"pv (5) — vav (5)

has solutions in the form of Hermite polynomials (Kastrup, 2007):

1/)11 (5) = N,H, (5)6762/2

where N, is the normalisation constant and H,, () are the Hermite polynomials. The

1
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wherev = 0, 1, 2, ... is the vibrational quantum number. The zero-point energy Ey =

energy eigenvalues are:

%hw represents a purely quantum mechanical effect with no classical analogue
(Kastrup, 2007).

For polyatomic molecules with IV atoms, there are 3N — 6 normal modes of vibration
(or 3N — 5 for linear molecules) (Wilson et al., 1980). Each normal mode can be
treated as an independent harmonic oscillator with its own frequency w; and quantum
number v;. The total vibrational energy is:

3N—6 !
Eyip = Z Fuw; (Uz' + §>
i=1



2.3 Anharmonic Corrections to Vibrational Motion

Real molecular potentials deviate from the harmonic approximation, particularly at
higher vibrational energies (Sathyanarayana, 2015). The Morse potential provides a
more realistic description of the vibrational potential:

V(r) =D, {1 — e_a(r_”)} 2

where D, is the dissociation energy, a = 4/ % is related to the force constant, and 7,

is the equilibrium bond length. The energy levels of the Morse oscillator are
(Sathyanarayana, 2015):

1 12
E, = hw, <U+§) — hwex, (’U—f—§)

where w, is the harmonic frequency and x, is the anharmonicity constant:

fuwe
4D,

2.4 Rotational-Vibrational Coupling

The coupling between rotational and vibrational motion arises from the dependence
of the moment of inertia on the vibrational state (Pekeris, 1934). For a diatomic
molecule, the moment of inertia varies with the instantaneous bond length:

I(r) = pr?

Expanding about the equilibrium position (Mills & Robiette, 1985):

I(r) =1+ (%)e (r 1)+ 5 (%)e (r = 7o)+ ..

Since I, = pr?, we have (%) = 2ur. and (%) = 2. This leads to:
e

(r—re) , (r— re)2]

Te r2

I(r) =1L [1+2

The rotational constant becomes vibrationally dependent (Pekeris, 1934):

1 1\?
B, =B, — a, v—i—g + Ye v—|—§ +



where B, is the equilibrium rotational constant, and a, and -y, are vibration-rotation
interaction constants.

2.5 Centrifugal Distortion

At high rotational energies, the centrifugal force causes the molecule to stretch,
leading to an increase in the moment of inertia and a corresponding decrease in the
rotational constant (Pekeris, 1934). This effect is described by the centrifugal distortion
constant D :

Ej, = By,J(J +1) — DsJ*(J + 1)

The centrifugal distortion constant is related to the vibrational frequency and
rotational constant (Wilson et al., 1980):

4B
1B

e

Dj;

2.6 Complete Rovibrational Hamiltonian

The complete rovibrational Hamiltonian for a diatomic molecule, including
anharmonic and centrifugal distortion effects, is (Pekeris, 1934):

1 1)°
E(v,J) = we (v—|—§) — WeTe (fu—|—§) + ByJ(J +1) — Dy J*(J + 1)

where:
1
B, =B, — a, (v—|—§>

This expression provides an accurate description of rovibrational energy levels for
most diatomic molecules and forms the basis for the analysis of high-resolution
molecular spectra (Schrader, 2008).

2.7 Selection Rules and Spectroscopic Transitions

The selection rules for rovibrational transitions are determined by the symmetry
properties of the molecular wavefunctions and the transition moment integrals
(Sathyanarayana, 2015). For electric dipole transitions, the selection rules are:



e Vibrational transitions: Av = +1 (fundamental), Av = +2, 43, ... (overtones)

e Rotational transitions: AJ = =41 (for molecules with permanent dipole
moments)

The transition frequencies for rovibrational transitions are (Schrader, 2008):
b= ~0 4+ B/J/(J/ + 1) L B//J//(J// + 1) . D/le(Jl 4+ 1)2 T D//J//2(J// + 1)2

where primed and double-primed quantities refer to the upper and lower vibrational
states, respectively.

2.8 Computational Methods

Modern computational quantum chemistry provides powerful tools for calculating
molecular properties from first principles (Jacob & Reiher, 2009). The Born-
Oppenheimer approximation allows the separation of electronic and nuclear motion,
enabling the calculation of potential energy surfaces that serve as input for
rovibrational calculations (Atkins & Friedman, 2011).

The time-independent Schrodinger equation for nuclear motion on a given electronic
potential energy surface is:

Toie + V(R)| Wue(R) = Erie(R)

where Tnuc is the nuclear kinetic energy operator, V(R) is the potential energy
surface, and R represents the nuclear coordinates.

For polyatomic molecules, the vibrational problem is typically solved using normal
mode analysis, where the potential energy is expanded about the equilibrium
geometry (Wilson et al., 1980):

%
V= Z anan Z . 90:0Q,0Q;, T T

where @Q; are the normal coordinates. The harmonic approximation retains only the

quadratic terms, while anharmonic treatments include higher-order terms (Mills &
Robiette, 1985).

The rotational problem for polyatomic molecules requires the solution of the
asymmetric top Hamiltonian, which can be accomplished using various approximation
schemes or numerical methods (Atkins & Friedman, 2011). The energy levels of



asymmetric top molecules are typically labelled using the quantum numbers J, K,
and K., where J is the total angular momentum quantum number, and K, and K,
are the projections of J onto the a and c principal axes in the prolate and oblate
symmetric top limits, respectively.

3. Results and Analysis

3.1 Rotational Energy Level Structure

The computational analysis of rotational energy levels, as illustrated in Figure 1,
demonstrates the fundamental quantum mechanical nature of molecular rotation
established by Dennison (1926). The left panel of Figure 1 presents the discrete energy
levels for a rigid rotor model applied to carbon monoxide (CO), where the energy levels
follow the characteristic J(J+1) dependence predicted by quantum mechanics. The
spacing between adjacent rotational levels increases linearly with J, reflecting the
quadratic relationship between energy and rotational quantum number (Atkins &
Friedman, 2011).
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Figure 1: (Left) Discrete rotational energy levels for CO showing the characteristic
J(J+1) spacing pattern. Red arrows indicate allowed transitions with AJ = £1. (Right)
Comparison between rigid rotor (blue dashed line) and centrifugally distorted rotor
(red solid line) showing the deviation at higher J values.



The rigid rotor approximation provides an excellent description of rotational motion at
low J values, where the centrifugal forces are insufficient to cause significant
molecular distortion (Dennison, 1926). However, as demonstrated in the right panel of
Figure 1, the inclusion of centrifugal distortion becomes increasingly important at
higher rotational energies. The centrifugal distortion constant D_J = 6.1 X 106 cm~'
for CO, whilst small, leads to measurable deviations from the rigid rotor prediction at J
> 10, as predicted by Pekeris (1934).

The physical origin of centrifugal distortion lies in the stretching of the molecular bond
under the influence of centrifugal forces during rotation (Pekeris, 1934). As the
molecule rotates faster, the effective bond length increases, leading to a larger
moment of inertia and consequently smaller rotational constants. This effect is
particularly pronounced in molecules with weaker bonds or larger vibrational
amplitudes, where the restoring force is insufficient to maintain a rigid molecular
structure under high rotational stress.

The mathematical treatment of centrifugal distortion through the inclusion of the D_J
J?(J+1)* term in the energy expression provides quantitative agreement with
experimental observations (Wilson et al., 1980). The magnitude of the centrifugal
distortion constant is related to the molecular vibrational frequency and rotational
constant through D_J = 4B_e®/w_e? establishing a direct connection between
rotational and vibrational properties of the molecule.

3.2 Vibrational Energy Levels and Anharmonic Effects

Figure 2 presents a comprehensive analysis of vibrational energy levels, contrasting
the harmonic oscillator approximation with the more realistic anharmonic treatment
(Sathyanarayana, 2015). The left panel clearly illustrates the fundamental difference
between these two models: whilst the harmonic oscillator predicts equally spaced
energy levels, the anharmonic oscillator exhibits decreasing level spacings at higher
vibrational energies.
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energy levels for HCI. The convergence of anharmonic levels towards the dissociation
limit is clearly visible. (Right) Morse potential (red) and harmonic potential (blue) with
superimposed vibrational energy levels, demonstrating the physical origin of
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anharmonicity.

The anharmonic treatment, based on the Morse potential, provides a more accurate
description of real molecular vibrations by accounting for the finite depth of the
potential well and the asymmetric nature of the internuclear potential
(Sathyanarayana, 2015). The anharmonicity constant x_e = 0.0174 for HCl leads to a
progressive decrease in the vibrational frequency as the quantum number v increases,
ultimately leading to a finite number of bound vibrational states below the dissociation

threshold.

The right panel of Figure 2 demonstrates the physical basis for anharmonic behaviour
through the comparison of Morse and harmonic potentials. The Morse potential, with
its characteristic asymmetric shape and finite dissociation energy, provides a realistic
representation of the internuclear potential energy curve (Sathyanarayana, 2015). The
superimposed vibrational energy levels illustrate how the wavefunctions become
increasingly delocalised at higher energies, with the highest bound states extending

well into the anharmonic region of the potential.

The practical implications of anharmonicity are profound for vibrational spectroscopy
(Schrader, 2008). Whilst the harmonic oscillator predicts only fundamental transitions



(Av = £1), anharmonic effects enable overtone transitions (Av = £2, £3, ...) and
combination bands involving multiple vibrational modes. These additional
spectroscopic features provide valuable information about the shape of the potential
energy surface and the strength of intermode coupling in polyatomic molecules.

The zero-point energy, clearly visible as the lowest vibrational level at v = 0, represents
a purely quantum mechanical effect with no classical analogue (Kastrup, 2007). For
HCl, the zero-point energy of approximately 1443 cm~" (half the harmonic frequency)
contributes significantly to the molecular energy and affects thermodynamic
properties such as heat capacity and entropy. The persistence of molecular motion
even at absolute zero temperature reflects the uncertainty principle and the wave-like
nature of matter.

3.3 Rotational-Vibrational Coupling Phenomena

The coupling between rotational and vibrational motion, illustrated in Figure 3,
represents one of the most important corrections to the independent oscillator-rotor
model (Mills & Robiette, 1985). The left panel demonstrates how the rovibrational
energy levels for different vibrational states (v = 0, 1, 2, 3) exhibit distinct rotational
progressions, with the spacing between rotational levels decreasing as the vibrational
quantum number increases.
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Figure 3: (Left) Rovibrational energy levels for CO showing the coupling between
rotational and vibrational motion. Different colours represent different vibrational
states (v = 0-3). (Right) Variation of the rotational constant B_v with vibrational



quantum number, demonstrating the linear relationship predicted by vibration-
rotation coupling theory.

This behaviour arises from the vibrational dependence of the molecular moment of
inertia, as first described by Pekeris (1934). As the molecule vibrates, the average bond
length increases due to the anharmonic nature of the potential, leading to a larger
moment of inertia and consequently smaller rotational constants. The right panel of
Figure 3 quantifies this effect through the linear relationship B_v=B_e - a_e(v + 1/2),
where the vibration-rotation coupling constant a_e =0.0175 cm~" for CO.

The physical interpretation of vibration-rotation coupling involves the recognition that
molecular rotation and vibration are not truly independent motions (Mills & Robiette,
1985). During vibrational motion, the instantaneous moment of inertia fluctuates as
the bond length oscillates about its equilibrium value. When averaged over the
vibrational motion, this leads to an effective moment of inertia that depends on the
vibrational state, with higher vibrational states corresponding to larger average bond
lengths and moments of inertia.

The magnitude of the coupling constant a_e provides insight into the strength of the
interaction between rotational and vibrational motion (Pekeris, 1934). For molecules
with stiffer bonds and smaller vibrational amplitudes, a_e is typically smaller,
indicating weaker coupling. Conversely, molecules with more flexible bonds exhibit
larger coupling constants, reflecting the greater sensitivity of the moment of inertia to
vibrational motion.

The systematic decrease in B_v with increasing v has important spectroscopic
consequences (Schrader, 2008). In rovibrational spectra, this leads to a complex
pattern of transitions where the rotational structure depends on both the initial and
final vibrational states. The analysis of such spectra requires careful consideration of
the vibration-rotation coupling terms to achieve accurate molecular constants and
structural parameters.

3.4 Spectroscopic Transition Patterns

Figure 4 provides a detailed analysis of rovibrational spectroscopic transitions,
illustrating the characteristic P and R branch structure that arises from the selection
rules governing electric dipole transitions (Sathyanarayana, 2015). The left panel
demonstrates the frequency distribution of transitions for the v = 0 — 1 vibrational



band of HCl, showing the distinctive gap at the band origin where the Q branch (AJ =0)
would appear if it were allowed.
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Figure 4: (Left) P and R branch structure of the rovibrational spectrum showing the
characteristic frequency distribution. The green dashed line indicates the band origin.
(Right) Intensity distribution at 300 K showing the Boltzmann population effects on
spectral intensities.

The P branch (AJ = -1) appears at frequencies lower than the band origin, whilst the R
branch (AJ = +1) appears at higher frequencies (Schrader, 2008). The spacing between
adjacent lines in each branch is determined by the rotational constants of the upper
and lower vibrational states, providing a direct experimental method for determining
molecular constants. The absence of the Q branch in heteronuclear diatomic
molecules like HCI reflects the selection rule AJ = %1 for electric dipole transitions
(Sathyanarayana, 2015).

The right panel of Figure 4 illustrates the crucial role of temperature in determining
spectroscopic intensities (Schrader, 2008). At room temperature (300 K), the
Boltzmann distribution leads to maximum population in rotational levels around J = 3-
4, corresponding to the most intense spectral lines. The intensity distribution follows
the product of the statistical weight (2J+1), the Boltzmann factor exp(-E_J/k_BT), and
the transition probability, resulting in the characteristic envelope shape observed in
experimental spectra.

The temperature dependence of spectroscopic intensities provides valuable
information about molecular energy levels and can be used to determine rotational
temperatures in non-equilibrium systems such as molecular beams, plasmas, and



interstellar environments (Takayanagi, 1965). The analysis of intensity ratios between
different rotational lines offers a model-independent method for temperature
determination, making rovibrational spectroscopy a powerful diagnostic tool in
diverse fields ranging from combustion research to astrophysics.

The computational simulation of spectroscopic intensities requires careful
consideration of all relevant physical effects, including nuclear spin statistics,
hyperfine structure, and pressure broadening (Schrader, 2008). The agreement
between theoretical predictions and experimental observations validates the quantum
mechanical treatment of molecular rotation and vibration whilst highlighting areas
where more sophisticated models may be required.

3.5 Three-Dimensional Potential Energy Landscape

The three-dimensional potential energy surface presented in Figure 5 provides a
comprehensive visualisation of the molecular potential energy landscape for a
diatomic molecule (Atkins & Friedman, 2011). This representation extends beyond the
one-dimensional Morse potential to illustrate how the potential energy varies with
both radial distance and angular orientation, providing insights into the coupling
between different degrees of freedom.
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Figure 5: Three-dimensional representation of the molecular potential energy surface
for a diatomic molecule. The characteristic bowl shape reflects the harmonic nature oi
small-amplitude vibrations, whilst the finite depth illustrates the dissociation limit.
Contour lines at the base provide a two-dimensional projection of the potential energy
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The cylindrical symmetry of the potential surface reflects the rotational symmetry of
homonuclear diatomic molecules, where the potential energy depends only on the
internuclear distance and not on the orientation in space (Atkins & Friedman, 2011).
The characteristic bowl shape near the equilibrium geometry demonstrates the
harmonic nature of small-amplitude vibrations, whilst the finite depth of the potential
well illustrates the dissociation limit beyond which the molecule ceases to exist as a

bound system.



The contour lines projected onto the base of the figure provide a two-dimensional
representation of the potential energy landscape, revealing the equipotential surfaces
that guide molecular motion (Jacob & Reiher, 2009). These contours are particularly
useful for understanding classical trajectories and for visualising the regions of
configuration space accessible to molecules with different total energies.

The three-dimensional representation also highlights the relationship between
different types of molecular motion (Atkins & Friedman, 2011). Radial motion
corresponds to vibrational motion along the bond axis, whilst angular motion
represents rotation about the centre of mass. The coupling between these motions,
evident in the curvature of the potential surface, provides the physical basis for the
vibration-rotation coupling effects discussed in the previous sections.

For polyatomic molecules, the potential energy surface becomes significantly more
complex, with multiple minima corresponding to different conformational isomers and
transition states connecting different regions of configuration space (Jacob & Reiher,
2009). The analysis of such surfaces requires sophisticated computational methods
and provides the foundation for understanding chemical reactivity, conformational
dynamics, and spectroscopic properties of complex molecular systems.

4. Discussion

4.1 Advantages of the Quantum Mechanical Approach

The quantum mechanical treatment of molecular rotations and vibrations offers
several significant advantages over classical descriptions (Atkins & Friedman, 2011).
Foremost amongst these is the natural emergence of discrete energy levels, which
provides a direct explanation for the observed line spectra of molecules without the
need for ad hoc quantisation rules. The quantum mechanical framework automatically
incorporates the wave-like nature of matter, leading to phenomena such as zero-point
motion and tunnelling that have no classical analogues but are essential for
understanding molecular behaviour (Kastrup, 2007).

The predictive power of quantum mechanics in molecular spectroscopy is remarkable
(Dennison, 1926). The theoretical expressions derived from first principles, such as E_J
= BJ(J+1) for rotational energy levels and E_v = Aw(v + 1/2) for vibrational levels,
provide quantitative agreement with experimental observations across a wide range of
molecular systems. This agreement extends beyond simple energy level predictions to



include transition probabilities, selection rules, and intensity distributions,
demonstrating the comprehensive nature of the quantum mechanical description
(Sathyanarayana, 2015).

The quantum mechanical approach also provides a unified framework for
understanding diverse molecular phenomena (Atkins & Friedman, 2011). The same
theoretical principles that govern gas-phase spectroscopy also apply to molecules in
condensed phases, on surfaces, and in biological systems, albeit with modifications to
account for environmental effects. This universality makes quantum mechanics an
invaluable tool for molecular science, providing insights that span multiple disciplines
and applications.

Furthermore, the quantum mechanical treatment naturally incorporates the effects of
molecular symmetry through group theory, leading to selection rules and correlation
diagrams that greatly simplify the analysis of complex spectra (Wilson et al., 1980). The
symmetry-based approach provides both computational efficiency and physical
insight, allowing researchers to predict which transitions are allowed or forbidden
without detailed calculations of transition matrix elements.

4.2 Limitations and Approximations

Despite its successes, the quantum mechanical treatment of molecular rotations and
vibrations relies on several approximations that limit its applicability in certain regimes
(Atkins & Friedman, 2011). The Born-Oppenheimer approximation, which separates
electronic and nuclear motion, breaks down when electronic states become nearly
degenerate or when non-adiabatic coupling becomes significant. This limitation is
particularly important for understanding photochemical processes, where electronic
transitions are coupled to nuclear motion.

The rigid rotor approximation, whilst excellent for low rotational energies, becomes
increasingly inaccurate as J increases and centrifugal distortion effects become
significant (Pekeris, 1934). For very high rotational states, the molecule may undergo
large-amplitude motions or even dissociate, requiring more sophisticated theoretical
treatments that go beyond the effective Hamiltonian approach.

Similarly, the harmonic oscillator approximation fails at high vibrational energies
where anharmonic effects dominate (Sathyanarayana, 2015). Near the dissociation
limit, the vibrational motion becomes highly anharmonic, and the concept of normal



modes may lose its validity. In such cases, more advanced methods such as variational
calculations on accurate potential energy surfaces become necessary.

The independent mode approximation, which treats different vibrational modes as
uncoupled harmonic oscillators, is another significant limitation for polyatomic
molecules (Mills & Robiette, 1985). In reality, vibrational modes are coupled through
anharmonic terms in the potential energy expansion, leading to phenomena such as
Fermi resonance and mode mixing that can dramatically affect spectroscopic
properties.

Environmental effects, such as solvent interactions, pressure broadening, and
collisional processes, are typically not included in the basic quantum mechanical
treatment (Kato & Tanimura, 2002). These effects can significantly modify molecular
energy levels and transition probabilities, particularly in condensed phases where
intermolecular interactions are strong.

4.3 Contemporary Applications and Future Directions

The principles of molecular rotations and vibrations find applications in numerous
contemporary research areas (Koch et al., 2019). In quantum control, the ability to
manipulate molecular rotational and vibrational states with tailored electromagnetic
fields has opened new possibilities for controlling chemical reactions and creating
exotic quantum states. Techniques such as coherent control and optimal control
theory rely heavily on the quantum mechanical understanding of molecular energy
levels and transition dynamics.

The field of ultracold molecules has emerged as a particularly exciting application area
(Koch et al., 2019). By cooling molecules to temperatures in the microkelvin range,
researchers can prepare samples where thermal motion is largely suppressed, allowing
for precise control over rotational and vibrational states. These systems serve as
testbeds for fundamental physics, including studies of quantum many-body
phenomena, precision measurements of fundamental constants, and searches for new
physics beyond the Standard Model.

Molecular quantum computing represents another frontier where rotational and
vibrational degrees of freedom play crucial roles (Koch et al., 2019). The rich energy
level structure of molecules provides numerous possibilities for encoding quantum
information, whilst the long coherence times achievable in certain molecular systems
make them attractive candidates for quantum memory applications. The challenge lies



in developing efficient methods for initialising, manipulating, and reading out
guantum states in molecular systems.

Precision spectroscopy of molecules continues to push the boundaries of
measurement accuracy, with applications ranging from tests of fundamental
symmetries to searches for time variation of fundamental constants (Schrader, 2008).
The exquisite sensitivity of molecular energy levels to external perturbations makes
them ideal probes for subtle physical effects that would be difficult to detect through
other means.

The development of new experimental techniques, such as frequency comb
spectroscopy and cavity-enhanced methods, has revolutionised the field of molecular
spectroscopy by providing unprecedented frequency accuracy and sensitivity
(Schrader, 2008). These advances have enabled the observation of previously
undetectable spectroscopic features and have opened new possibilities for studying
molecular dynamics on ultrafast timescales.

Computational advances continue to expand the range of molecular systems that can
be treated accurately from first principles (Jacob & Reiher, 2009). The development of
more efficient algorithms for solving the Schrodinger equation, combined with
increases in computational power, has made it possible to perform accurate
calculations on increasingly large and complex molecular systems. These calculations
provide not only quantitative predictions for comparison with experiment but also
detailed insights into the physical mechanisms underlying molecular behaviour.

4.4 Interdisciplinary Connections

The study of molecular rotations and vibrations has profound connections to
numerous other fields of science and technology (Atkins & Friedman, 2011). In
atmospheric science, the rotational and vibrational spectra of trace gases provide the
basis for remote sensing techniques used to monitor atmospheric composition and
climate change. The ability to identify and quantify specific molecular species from
their spectroscopic signatures is essential for understanding atmospheric chemistry
and dynamics.

In astrophysics, molecular spectroscopy serves as a primary tool for studying the
composition and physical conditions of interstellar and circumstellar environments
(Takayanagi, 1965). The detection of complex organic molecules in space relies on



laboratory measurements of rotational and vibrational spectra, providing insights into
the chemical processes that occur in extreme astrophysical environments.

The field of materials science benefits from vibrational spectroscopy techniques such
as infrared and Raman spectroscopy, which provide information about molecular
structure, bonding, and dynamics in solid-state systems (Schrader, 2008). The
understanding of phonon modes in crystals, which are collective vibrational
excitations, draws heavily on the principles developed for molecular vibrations.

Biological systems present particularly challenging applications for molecular
spectroscopy due to their complexity and the presence of water, which has strong
infrared absorption (Lorente & Persson, 2000). Nevertheless, techniques such as
vibrational circular dichroism and two-dimensional infrared spectroscopy have
provided valuable insights into protein folding, enzyme dynamics, and other biological
processes.

4.5 Technological Implications

The principles underlying molecular rotations and vibrations have led to numerous
technological applications that impact daily life (Schrader, 2008). Infrared
spectroscopy is widely used in analytical chemistry for qualitative and quantitative
analysis of molecular samples. The ability to identify functional groups and molecular
structures from their vibrational signatures has made infrared spectroscopy an
indispensable tool in fields ranging from pharmaceutical development to
environmental monitoring.

Laser technology has been revolutionised by the understanding of molecular energy
levels and transition dynamics (Koch et al., 2019). Gas lasers, such as the CO. laser,
operate by creating population inversions between specific rovibrational states, whilst
dye lasers and other molecular laser systems rely on electronic-vibrational coupling for
their operation. The development of new laser systems continues to benefit from
advances in molecular spectroscopy and quantum control.

The emerging field of quantum sensing exploits the sensitivity of molecular energy
levels to external perturbations for precision measurements (Koch et al.,, 2019).
Molecular sensors based on rotational and vibrational transitions offer the potential for
detecting minute changes in electric and magnetic fields, temperature, pressure, and
chemical composition with unprecedented sensitivity.



Advances in molecular cooling and trapping techniques have opened possibilities for
new types of precision measurements and quantum technologies (Koch et al., 2019).
The ability to prepare molecules in specific rotational and vibrational states and to
control their motion with high precision provides the foundation for applications in
quantum computing, quantum simulation, and precision metrology.

4.6 Educational and Pedagogical Considerations

The study of molecular rotations and vibrations serves as an excellent introduction to
quantum mechanics for students in chemistry and physics (Atkins & Friedman, 2011).
The discrete energy levels and selection rules provide concrete examples of quantum
mechanical principles, whilst the connection to experimental spectroscopy
demonstrates the practical relevance of theoretical concepts. The mathematical
treatment, whilst sophisticated, remains accessible to undergraduate students and
provides valuable experience with quantum mechanical calculations.

The visualisation of molecular motion through computational graphics and animations
has greatly enhanced the pedagogical value of this subject (Rempe & Jénsson, 1998).
Students can now observe the time evolution of vibrational motion, the precession of
rotating molecules, and the coupling between different degrees of freedom in ways
that were impossible with traditional static diagrams. These visual tools help bridge
the gap between abstract mathematical formalism and physical intuition.

The interdisciplinary nature of molecular spectroscopy makes it an ideal vehicle for
demonstrating the connections between different areas of science (Atkins & Friedman,
2011). Students studying molecular rotations and vibrations encounter concepts from
classical mechanics, quantum mechanics, statistical thermodynamics, and
electromagnetic theory, providing a comprehensive introduction to physical science
principles.

4.7 Future Research Directions

Several emerging research directions promise to further advance our understanding of
molecular rotations and vibrations (Koch et al., 2019). The development of attosecond
spectroscopy techniques offers the possibility of observing molecular dynamics on the
natural timescale of electronic motion, potentially revealing new aspects of the
coupling between electronic and nuclear degrees of freedom.



Machine learning approaches are beginning to revolutionise the analysis of molecular
spectra and the prediction of molecular properties (Jacob & Reiher, 2009). Neural
networks and other artificial intelligence techniques can identify patterns in
spectroscopic data that might be missed by conventional analysis methods, whilst also
providing new approaches for solving the quantum mechanical equations that govern
molecular behaviour.

The study of molecules in extreme environments, such as high-pressure conditions,
strong magnetic fields, or intense laser fields, continues to reveal new phenomena that
challenge our theoretical understanding (Koch et al., 2019). These studies not only
advance fundamental science but also have practical applications in areas such as
planetary science, fusion energy research, and materials processing.

The development of new experimental techniques for controlling and manipulating
individual molecules promises to open new frontiers in molecular science (Lorente &
Persson, 2000). Single-molecule spectroscopy, molecular manipulation with scanning
probe microscopes, and optical trapping of individual molecules provide
unprecedented opportunities for studying molecular behaviour under controlled
conditions.

The integration of quantum mechanical calculations with experimental measurements
through automated feedback systems represents another promising direction (Jacob &
Reiher, 2009). Such systems could optimise experimental conditions in real-time based
on theoretical predictions, leading to more efficient discovery of new phenomena and
more accurate determination of molecular properties.

As we advance into an era of quantum technologies and precision science, the
fundamental understanding of molecular rotations and vibrations will undoubtedly
continue to play a central role in shaping our technological capabilities and scientific
knowledge (Koch et al., 2019). The elegant mathematical framework developed over
the past century provides a solid foundation for these future developments, whilst the
continuing interplay between theory and experiment ensures that new discoveries will
continue to emerge from this rich and vibrant field of research.

5. Conclusion

This comprehensive analysis of molecular rotations and vibrations has demonstrated
the profound elegance and predictive power of quantum mechanics in describing



molecular motion (Atkins & Friedman, 2011). Through detailed mathematical
derivations, computational visualisations, and extensive discussion of contemporary
applications, we have explored the fundamental principles that govern the behaviour
of molecules from the quantum mechanical perspective.

The rigid rotor and harmonic oscillator models, despite their apparent simplicity,
provide remarkably accurate descriptions of molecular behaviour under appropriate
conditions (Dennison, 1926; Wilson et al., 1980). The discrete energy levels E_J =
BJ(J+1) for rotation and E_v = A w(v + 1/2) for vibration emerge naturally from the
quantum mechanical treatment, providing direct explanations for the observed line
spectra of molecules without recourse to classical analogies or ad hoc quantisation
rules.

The coupling between rotational and vibrational motion represents one of the most
important refinements to the independent oscillator-rotor model (Pekeris, 1934). The
systematic variation of rotational constants with vibrational state, described by B_v =
B_e - a_e(v + 1/2), reflects the fundamental interconnectedness of different degrees of
freedom in molecular systems. This coupling manifests in spectroscopic observations
as complex patterns of transitions that provide detailed information about molecular
structure and dynamics (Mills & Robiette, 1985).

Our computational visualisations have illuminated the physical mechanisms
underlying these quantum mechanical phenomena. The energy level diagrams clearly
demonstrate the discrete nature of molecular energy states, whilst the three-
dimensional potential energy surfaces provide intuitive understanding of the forces
that govern molecular motion. The spectroscopic transition patterns reveal the
selection rules that determine which transitions are allowed, connecting theoretical
predictions with experimental observations (Sathyanarayana, 2015).

The discussion of advantages and limitations has highlighted both the remarkable
successes and the inherent approximations of the quantum mechanical approach.
Whilst the theoretical framework provides quantitative agreement with experimental
observations across a wide range of conditions, important limitations arise from
approximations such as the Born-Oppenheimer separation, the rigid rotor assumption,
and the harmonic oscillator model (Atkins & Friedman, 2011). Understanding these
limitations is crucial for identifying the regimes where more sophisticated theoretical
treatments become necessary.



The contemporary applications discussed in this work demonstrate the continuing
relevance of molecular rotations and vibrations to cutting-edge research (Koch et al.,
2019). From quantum control and ultracold molecules to precision spectroscopy and
quantum computing, the principles established through decades of research continue
to drive technological innovation and scientific discovery. The interdisciplinary nature
of these applications underscores the fundamental importance of molecular quantum
mechanics across multiple fields of science and engineering.

Looking towards the future, several emerging research directions promise to further
expand our understanding and applications of molecular rotations and vibrations
(Koch et al., 2019). The development of attosecond spectroscopy techniques, machine
learning approaches to spectral analysis, and single-molecule manipulation methods
will undoubtedly reveal new phenomena and enable new applications that we can
barely imagine today.

The educational value of molecular rotations and vibrations as an introduction to
guantum mechanics cannot be overstated (Atkins & Friedman, 2011). The concrete
connection between theoretical predictions and experimental observations provides
students with tangible evidence for the validity of quantum mechanical principles,
whilst the mathematical treatment offers valuable experience with quantum
mechanical calculations and concepts.

In conclusion, the quantum mechanical treatment of molecular rotations and
vibrations stands as one of the great triumphs of twentieth-century physics, providing
a unified framework for understanding molecular behaviour that continues to yield
new insights and applications (Dennison, 1926; Wilson et al., 1980; Pekeris, 1934). The
elegant mathematical formalism, combined with its remarkable predictive power,
ensures that this field will remain central to molecular science for generations to come.
As we advance into an era of quantum technologies and precision measurements, the
fundamental understanding developed through the study of molecular rotations and
vibrations will undoubtedly play an increasingly important role in shaping our
technological capabilities and scientific knowledge (Koch et al., 2019).



6. Attachments

6.1 Python Code for Molecular Visualisations

The complete Python code used to generate the molecular rotation and vibration
visualisations is provided below. This code implements the theoretical framework
developed in the methodology section and produces publication-quality figures
suitable for academic presentation.



#!/usr/bin/env python3

Molecular Rotations and Vibrations Visualisation Code
Author: Richard Murdoch Montgomery

Scottish Science Society

This code generates elegant visualisations of molecular rotational and
vibrational
energy levels, including coupling effects and spectroscopic transitions.

mirrn

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.patches import Rectangle
import matplotlib.patches as patches
from mpl_toolkits.mplot3d import Axes3D
import seaborn as sns

# Set style for publication-quality figures
plt.style.use('seaborn-v0_8-whitegrid')
sns.set_palette("husl")

# Physical constants
h = 6.62607015e-34 # Planck constant (J-s)
hbar = h / (2 * np.pi) # Reduced Planck constant

C = 2.99792458e8 # Speed of light (m/s)
k_B = 1.380649e-23 # Boltzmann constant (J/K)
amu = 1.66053906660e-27 # Atomic mass unit (kg)

class MolecularSystem:
"""class to represent a molecular system with rotational and vibrational
properties. """

def __init__ (self, name, mu, r_e, omega_e, B_e, alpha_e=0, x_e=0, D_J=0):

miin

Initialize molecular system parameters.

Parameters:
name : Str

Name of the molecule
mu : float

Reduced mass (amu)
r_e : float

Equilibrium bond length (A)
omega_e : float

Harmonic frequency (cm-1)
B e : float

Equilibrium rotational constant (cm-1)
alpha_e : float

Vibration-rotation coupling constant (cm-1)
x_e : float

Anharmonicity constant
D J : float

Centrifugal distortion constant (cm~1)
min
self.name = name
self.mu = mu * amu # Convert to kg
self.r_e = r_e * 1e-10 # Convert to m
self.omega_e = omega_e
self.B_e = B_e



self.alpha
self.x_e
self.D_J

_e = alpha_e
Xx_e
D_J

def rotational_energy(self, J, v=0):
"""Calculate rotational energy levels."""
B_v = self.B_e - self.alpha_e * (v + 0.5)
return B_.v * J * (J + 1) - self.D_J * J**2 * (J + 1)**2

def vibrational_enerqgy(self, v):
"""Calculate vibrational energy levels."""
return self.omega_e * (v + 0.5) - self.omega_e * self.x_e * (v +
0.5)**2

def rovibrational_energy(self, v, J):
"""Calculate combined rovibrational energy levels."""
return self.vibrational_energy(v) + self.rotational_energy(J, V)

def create_rotational_energy_diagram():
"""Create rotational energy level diagram."""
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 8))

# Example molecule: CO
CO = MolecularSystem("CO", 6.86, 1.128, 2170, 1.931, 0.0175, 0.006, 6.l1e-6)

# Plot 1: Pure rotational energy levels

J_max = 15

J_values = np.arange(0, J_max + 1)

E_rot = [CO.rotational_energy(J) for J in J_values]

axl.hlines(E_rot, 0, 1, colors='blue', linewidth=2)
for i, (J, E) in enumerate(zip(J_values, E_rot)):
axl.text(1.1, E, f'J = {J}', va='center', fontsize=10)
if J > 0o:
# Show transitions
axl.annotate('', xy=(0.5, E), xytext=(0.5, E_rot[J-1]),
arrowprops=dict(arrowstyle='<->"', color='red', 1lw=1))

axl.set_x1lim(-0.2, 2)

axl.set_ylabel('Energy (cm-1)', fontsize=12)

axl.set_title('Rotational Energy Levels\n(Rigid Rotor)', fontsize=14,
fontweight="bold")

axl.set_xticks([])

axl.grid(True, alpha=0.3)

# Plot 2: Effect of centrifugal distortion

J_values_fine = np.linspace(0, 20, 100)

E_rigid = C0.B_e * J_values_fine * (J_values_fine + 1)

E_distorted = C0.B_e * J_values_fine * (J_values_fine + 1) - CO0.D_J *
J_values_fine**2 * (J_values_fine + 1)**2

ax2.plot(J_values_fine, E_rigid, 'b--', label='Rigid Rotor', linewidth=2)

ax2.plot(J_values_fine, E_distorted, 'r-', label='With Centrifugal
Distortion', linewidth=2)

ax2.set_xlabel('J', fontsize=12)

ax2.set_ylabel('Energy (cm-1)', fontsize=12)

ax2.set_title('Centrifugal Distortion Effect', fontsize=14,
fontweight="'bold")

ax2.legend(fontsize=11)

ax2.grid(True, alpha=0.3)

plt.tight_Tlayout()



plt.savefig('/home/ubuntu/rotational_energy_diagram.png', dpi=300,

bbox_inches="'tight"')

def

plt.close()

create_vibrational_energy_diagram():
"""Create vibrational energy level diagram."""
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 8))

# Example molecule: HCl1
HCl = MolecularSystem("HCl", 0.98, 1.275, 2886, 10.59, 0.307, 0.0174)

# Plot 1: Harmonic vs anharmonic oscillator
v_max = 8
v_values = np.arange(0, v_max + 1)

# Harmonic energies
E_harmonic = [HCl.omega_e * (v + 0.5) for v in v_values]

# Anharmonic energies
E_anharmonic = [HCl.vibrational_energy(v) for v in v_values]

# Plot energy levels
for i, (v, E_h, E_a) in enumerate(zip(v_values, E_harmonic, E_anharmonic)):
axl.hlines(E_h, 0, 0.8, colors='blue', linewidth=2, alpha=0.7)
axl.hlines(E_a, 1.2, 2, colors='red', linewidth=2)
axl.text(-0.1, E_h, f'v = {v}', ha='right', va='center', fontsize=10)
axl.text(2.1, E_a, f'v = {v}', ha='left', va='center', fontsize=10)

axl.text(0.4, max(E_harmonic) * 0.9, 'Harmonic', ha='center',6 fontsize=12,
bbox=dict (boxstyle="round, pad=0.3", facecolor="1lightblue"))
axl.text(1.6, max(E_anharmonic) * 0.9, 'Anharmonic', ha='center',

fontsize=12,

bbox=dict(boxstyle="round, pad=0.3", facecolor="1lightcoral"))

axl.set_xlim(-0.5, 2.5)
axl.set_ylabel('Energy (cm-1)', fontsize=12)
axl.set_title('Harmonic vs Anharmonic Oscillator', fontsize=14,

fontweight="'bold")

axl.set_xticks([1])
axl.grid(True, alpha=0.3)

lot 2: Morse potential

np.linspace(0.8, 3.0, 1000)

1.275

4.4 # eV, approximate dissociation energy for HCl1
.8 # Morse parameter

$
I 9

# Morse potential
V_morse = D_e * (1 - np.exp(-a * (r - r_e)))**2

# Harmonic potential (for comparison)
k =2 * D_e * a**2 # Force constant
V_harmonic = 0.5 * k * (r - r_e)**2

ax2.plot(r, V_morse, 'r-', linewidth=2, label='Morse Potential')
ax2.plot(r, V_harmonic, 'b--', Tlinewidth=2, label='Harmonic Potential')

# Add vibrational energy levels
for v in range(6):
E_v = HCl.vibrational_energy(v) * 1.24e-4 # Convert cm~1 to eV
if E.v < D_e:
ax2.hlines(E_v, 0.8, 3.0, colors='green', alpha=0.6, linewidth=1)



ax2.text(3.1, E_v, f'v={v}', va='center', fontsize=9)

ax2.set_xlabel('Bond Length (A)', fontsize=12)

ax2.set_ylabel('Potential Energy (eV)', fontsize=12)

ax2.set_title('Morse Potential and Vibrational Levels', fontsize=14,
fontweight="'bold")

ax2.legend(fontsize=11)

ax2.grid(True, alpha=0.3)

ax2.set_x1im(0.8, 3.5)

ax2.set_ylim(0, 5)

plt.tight_Tlayout()

plt.savefig('/home/ubuntu/vibrational_energy_diagram.png', dpi=300,
bbox_inches="tight")

plt.close()

def create_rovibrational_coupling_diagram():
"""Create rovibrational coupling enerqy diagram."""
fig, (ax1, ax2) = plt.subplots(l, 2, figsize=(16, 8))

# Example molecule: CO
CO = MolecularSystem("CO", 6.86, 1.128, 2170, 1.931, 0.0175, 0.006, 6.1e-6)

# Plot 1: Rovibrational energy levels for different v
J_max = 20

J_values = np.arange(0, J_max + 1)

v_values = [0, 1, 2, 3]

colors = ['blue', 'red', 'green', 'orange']

for v, color in zip(v_values, colors):
E_rov = [CO.rovibrational_energy(v, J) for J in J_values]
axl.plot(J_values, E_rov, 'o-', color=color, label=f'v = {v}',
markersize=4, linewidth=2)

axl.set_xlabel('J', fontsize=12)

axl.set_ylabel('Energy (cm-1)', fontsize=12)

axl.set_title('Rovibrational Energy Levels', fontsize=14,
fontweight="bold")

ax1l.legend(fontsize=11)

axl.grid(True, alpha=0.3)

# Plot 2: Rotational constant variation with v
v_range = np.arange(0, 10)
B_.v = [CO.B_e - CO.alpha_e * (v + 0.5) for v in v_range]

ax2.plot(v_range, B_v, 'ro-', linewidth=2, markersize=6)

ax2.set_xlabel('Vibrational Quantum Number (v)', fontsize=12)

ax2.set_ylabel('Rotational Constant B_v (cm-1)', fontsize=12)

ax2.set_title('Vibration-Rotation Coupling\n(B_v vs v)', fontsize=14,
fontweight="bold")

ax2.grid(True, alpha=0.3)

# Add equation as text

equation_text = r'$'B_v = B_e - \alpha_e(v + \frac{1}{2}) $'

ax2.text(0.7, 0.9, equation_text, transform=ax2.transAxes, fontsize=14,
bbox=dict(boxstyle="round, pad=0.3", facecolor="1lightyellow"))

plt.tight_Tlayout()

plt.savefig('/home/ubuntu/rovibrational_coupling_diagram.png', dpi=300,
bbox_inches="'tight")

plt.close()



def create_spectroscopic_transitions():
"""Create spectroscopic transition diagram."""
fig, (ax1, ax2) = plt.subplots(l, 2, figsize=(16, 8))

# Example molecule: HC1
HCl = MolecularSystem("HC1", ©0.98, 1.275, 2886, 10.59, 0.307, 0.0174)

# Plot 1: P, Q, R branches
J_max = 10
J_values = np.arange(0, J_max + 1)

# Calculate transition frequencies for v=0-1
v_Tlower, v_upper = 0, 1
nu_0 = HCl.vibrational_energy(v_upper) - HCl.vibrational_energy(v_lower)

# P branch (AJ = -1)

P_branch = []

for J in range(1, J_max + 1):
E_upper = HCl.rovibrational_energy(v_upper, J - 1)
E_lower = HCl.rovibrational_energy(v_lower, J)
P_branch.append(E_upper - E_lower)

# R branch (AJ = +1)

R_branch = []

for J in range(©, J_max):
E_upper = HCl.rovibrational_energy(v_upper, J + 1)
E_lower = HCl.rovibrational_energy(v_lower, J)
R_branch.append(E_upper - E_Tlower)

# Plot branches

P_J = np.arange(1, J_max + 1)

R_J = np.arange(0, J_max)

axl.plot(P_branch, P_J, 'bo-', label='P Branch (AJ = -1)', markersize=6)

axl.plot(R_branch, R_J, 'ro-', label='R Branch (AJ = +1)', markersize=6)

axl.axvline(nu_0O, color='green', linestyle='--', linewidth=2, label='Band
Origin')

axl.set_xlabel('Frequency (cm-1)', fontsize=12)

axl.set_ylabel('J', fontsize=12)

axl.set_title('Rovibrational Spectrum Structure\n(P and R Branches)',
fontsize=14, fontweight='bold'")

ax1l.legend(fontsize=11)

axl.grid(True, alpha=0.3)

# Plot 2: Intensity distribution

T = 300 # Temperature in K

frequencies = np.concatenate([P_branch, R_branch])
J_all = np.concatenate([P_J, R_J])

# Boltzmann population
populations = []
for J in J_all:
E_lower = HCl.rotational_energy(J, v_lower)
pop = (2 * J + 1) * np.exp(-E_lower * 1.44 / T) # 1.44 = hc/k_B in

populations.append(pop)

populations = np.array(populations)
populations populations / np.max(populations) # Normalize

ax2.stem(frequencies, populations, basefmt=' ')



ax2.set_xlabel('Frequency (cm-1)', fontsize=12)

ax2.set_ylabel('Relative Intensity', fontsize=12)

ax2.set_title(f'Rovibrational Spectrum at T = {T} K', fontsize=14,
fontweight="bold")

ax2.grid(True, alpha=0.3)

plt.tight_Tlayout()

plt.savefig('/home/ubuntu/spectroscopic_transitions.png', dpi=300,
bbox_inches="tight")

plt.close()

def create_3d_potential_surface():
"""Create 3D potential energy surface for diatomic molecule. """
fig = plt.figure(figsize=(12, 9))
ax = fig.add_subplot(111, projection='3d")

# Create coordinate grids

r = np.linspace(0.8, 3.0, 50)

theta = np.linspace(0, 2*np.pi, 50)
R, THETA = np.meshgrid(r, theta)

# Morse potential parameters for HCl

re =1.275

D_e = 4.4

a=1.8

# Calculate potential energy surface

V=De* (1 - np.exp(-a * (R - r_e)))**2

# Convert to Cartesian coordinates for plotting
X = R * np.cos(THETA)

Y = R * np.sin(THETA)

# Create surface plot
surf = ax.plot_surface(X, Y, V, cmap='viridis', alpha=0.8,
linewidth=0, antialiased=True)

# Add contour lines at the bottom
contours = ax.contour(X, Y, V, levels=10, offset=0, cmap='viridis',
alpha=0.6)

ax.set_xlabel('x (A)', fontsize=12)

ax.set_ylabel('y (A)', fontsize=12)

ax.set_zlabel('Potential Energy (eV)', fontsize=12)

ax.set_title('3D Potential Energy Surface\n(Diatomic Molecule)',
fontsize=14, fontweight='bold'")

# Add colorbar
fig.colorbar(surf, ax=ax, shrink=0.5, aspect=20)

plt.tight_Tlayout()

plt.savefig('/home/ubuntu/3d_potential_surface.png', dpi=300,
bbox_inches="'tight"')

plt.close()

def main():
"""Generate all molecular visualisations."""
print("Generating molecular rotation and vibration visualisations...")

print("1. Creating rotational energy diagram...")
create_rotational_energy_diagram()



print("2. Creating vibrational energy diagram...")
create_vibrational_energy_diagram()

print("3. Creating rovibrational coupling diagram...")
create_rovibrational_coupling_diagram()

print("4. Creating spectroscopic transitions diagram...")
create_spectroscopic_transitions()

print("5. Creating 3D potential surface...")
create_3d_potential_surface()

print("All visualisations completed successfully!")
print("\nGenerated files:")

print("- rotational_energy_diagram.png")

print("- vibrational_energy_diagram.png")

print("- rovibrational_coupling_diagram.png")
print("- spectroscopic_transitions.png")

print("- 3d_potential_surface.png")

if __name__ == "__main__":
main()
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