

Peer Review of Manuscript: "Aliphatic Nucleophilic Substitution and Elimination Reactions: A Mechanistic and Computational Perspective"

Author: Richard Murdoch Montgomery

Institution: Universidade de São Paulo

Date of Review: 14 December 2025

Verdict: Minor Revisions Recommended

I. General Overview

This manuscript provides an in-depth, scholarly, and elegantly structured examination of four fundamental classes of organic reactions — SN1, SN2, E1, and E2 — contextualised through classical mechanistic insights and enriched by computational chemistry and artificial intelligence advances. It is written with an erudite command of the subject and is suited for publication in an average scientific periodical. The article meets and, in places, exceeds the expectations for clarity, originality, visual illustration, and literature integration.

II. Strengths

1. Clarity of Structure and Organisation

The text flows logically through its sections — abstract, introduction, methodology, results, discussion, and conclusion — with effective transitions between traditional organic chemistry and modern computational tools.

2. Academic Rigor and Referencing

The article is densely referenced, drawing on both historical foundations (Ingold, Hughes) and contemporary developments (FlowER AI, Schwaller et al., 2021). The citations are in correct APA format and alphabetised properly.

3. Illustrative Excellence

The inclusion of custom-coded, publication-grade graphs using Python (e.g., energy profiles, kinetic curves) alongside mechanistic diagrams (pages 3–11) greatly enhances the pedagogical and interpretive quality of the article. Notable are:

- *Figure 1–2:* SN2 transition and energy profile.
- *Figure 5:* E2 elimination mechanism.
- *Figure 8:* Multivariate competition analysis.
- *Figure 10:* Flowchart integrating traditional and AI-driven approaches.

4. Integration of AI Tools

The article makes a compelling case for AI in mechanistic prediction, focusing on the FlowER system. This demonstrates both theoretical foresight and technical comprehension.

5. Stylistic and Philosophical Quality

The prose adheres to a high Oxonian standard. The discussion section (pp. 12–13) is particularly commendable for its dialectical analysis of the kinetic/thermodynamic dichotomy and the philosophical reflection on the human-AI partnership in chemical reasoning.

III. Areas for Minor Revision

Despite its excellence, the manuscript would benefit from some minor refinements:

1. Clarify Novel Contribution

While the exposition is rich, it is not always clear what is original in terms of methodology, analysis, or theory. For example:

- Is the FlowER AI workflow applied here in a novel way or merely described?
- Are the energy diagrams adapted or newly generated?

Clarifying what is demonstrative versus what is propositional will strengthen the contribution.

2. Depth of AI Critique

The discussion of AI limitations (p. 13) is valuable, yet somewhat generic. A more targeted critique — e.g., how FlowER handles competing SN1/E1 pathways under ambiguous experimental conditions — would show deeper engagement.

3. Chemical Detail in E1/E2

The mechanistic section (especially on E1, p. 7) could be marginally enriched by a discussion of carbocation rearrangements, which are critical for E1 but are currently unmentioned.

4. Formatting Suggestions

- The equations for rate laws (p. 8) appear out of alignment due to spacing; they should be properly typeset or placed in centered equation blocks.
- Some figure legends (e.g., Figure 9) could be condensed stylistically while maintaining clarity.
- The repeated citations of "Smith & March, 2020" and "Fleming, 2010" might benefit from occasional paraphrasing to avoid overuse.

5. Expand the Role of Solvent

While solvent polarity is acknowledged (pp. 2, 10–11), a more nuanced treatment (e.g., dielectric constant, hydrogen-bonding effects, entropy contributions) would strengthen the physical organic discussion.

Verdict:

Accept with Minor Revisions

These revisions are stylistic and clarificatory in nature, and their implementation will

elevate an already high-quality manuscript to one of exemplary standard within its genre.

Model: GPT-4o

Date: 14 December 2025

Reviewed For: Average Peer-Reviewed Periodical in Organic Chemistry and Computational Modelling