

Here is a detailed peer review of the manuscript titled "Quantum Mechanical Foundations and Computational Advances in Molecular Electronic Transitions: A Comprehensive Review of Theory, Methodology, and Contemporary Applications", as requested for an average-level scientific periodical.

This review assumes a readership of competent chemists or physicists but not necessarily specialists in quantum chemistry or TD-DFT methods.

◆ Overall Evaluation

Recommendation: ★★★★☆ (Minor Revision)

Summary: This manuscript is a highly structured, visually enriched, and rigorous review of molecular electronic transitions. It thoroughly covers quantum mechanical foundations, computational approaches (especially TD-DFT), spectroscopic interpretations, and contemporary applications. The quality of writing is elevated and academic, with well-illustrated figures and detailed discussions.

While it is beyond the average scope of a typical mid-tier journal in terms of depth, it is well-suited for an audience of graduate-level readers or cross-disciplinary scientists, particularly if lightly edited for brevity and focused clarity.

◆ Strengths

1. Clarity and Organisation

- The article is logically structured, progressing from quantum mechanical theory to computational techniques, then to spectroscopic implications and applications.
- Subsections such as *Franck-Condon analysis*, *conjugation effects*, and *solvatochromism* are particularly well developed.
- Each figure is not only informative but also accompanied by an explanatory paragraph, reinforcing its educational value.

2. Scientific Rigor

- Mathematical formulations (e.g., oscillator strength equations, Casida formalism) are correct and appropriately cited.
- Use of foundational references (Planck, Bohr, Runge & Gross, Casida) ensures the article is deeply rooted in primary theory.
- The article balances classical texts (Bethe & Salpeter, Szabo & Ostlund) with contemporary literature (Adamo & Jacquemin, Dreuw et al.).

3. Visual Aids

- The *energy level diagram* (Figure 1), *absorption spectra deconvolution* (Figure 2), and *Franck-Condon diagram* (Figure 3) provide clear and pedagogically sound visual representations.
- Figure 5 (solvent effects) nicely correlates experimental data with theoretical interpretation.

◆ Weaknesses and Points for Revision

1. Scope Creep for Target Journal Level

- For a mid-tier journal, the manuscript might be *too comprehensive*; certain sections (e.g., full derivation of molecular orbital energies, complete solvatochromic treatment) could be abridged.
- Consider moving in-depth derivations to supplementary material if page space or conciseness is required.

2. Overuse of Historical References

- While the historical narrative is appreciated, the inclusion of Bohr, Heisenberg, Planck, etc., in multiple early paragraphs may not directly serve the core review goal and could be streamlined.

3. Missing Reference Details

- A few references, though cited in text, need clarification or expansion:
 - *Dewar, 1969* and *Murrell, 1963* are mentioned without corresponding full entries in the reference list.
 - *Wilson et al. 1955* and *Bayliss & McRae, 1954* are cited in figures but not listed.

4. No Table Summary

- The article lacks a summarising table comparing different computational methods (e.g., CI, CC, TD-DFT, etc.), which would aid in quick reference.
- A tabular format of *strengths/weaknesses*, *scalability*, *accuracy*, and *common use cases* would be pedagogically helpful.

◆ Specific Suggestions by Section

► Abstract

- Clear and impactful. Possibly too dense—consider breaking into two paragraphs for readability.

► Introduction

- Rich and historically contextualised, though trimming 10–15% could increase clarity without loss of value.

► Methodology

- Sound and well structured.
- The section on TD-DFT could mention known limitations more explicitly (e.g., underestimation of long-range CT states, dependence on functional choice).

► Results

- Excellent visual support.
- Suggest inserting **Table 1**: A concise summary of transition types, typical λ_{max} , intensities, and solvent dependence.

► Discussion

- Strong scientific merit.
- The limitations section (4.3) could mention ongoing hybrid approaches (e.g., TD-DFT + GW/BSE or ADC methods).

► Conclusion

- Dense but forward-looking. Perhaps insert a final bullet-style paragraph listing open challenges to increase engagement.

◆ Language & Style

- Generally excellent and formal. No grammatical errors observed.
- Minor redundancy in some parts (e.g., "accurate and rigorous theoretical framework" appears multiple times).
- Avoid phrases like "revolutionised" unless well justified (TD-DFT advanced the field rather than revolutionised it, by some accounts).

► Final Remarks

This is a **publishable** manuscript that offers significant didactic and theoretical value. With minor revisions—especially trimming for length and improving balance between historical overview and modern application—it could be very well suited for a mid-level journal in **computational chemistry**, **molecular physics**, or **quantum spectroscopy**.