
Verdict	Accept with Minor Revisions
Primary Model	Quantum Embedding Divide-and-Conquer Approach
Review Date	January 17, 2026
Scientific Significance	High
Computational Innovation	Transforms exponential scaling problem into engineering optimization
Key Methodological Contribution	Polynomial-scaling solvers for strongly correlated electron systems
Theoretical Depth	Comprehensive quantum mechanical embedding framework
Benchmark Validation	Demonstrated across transition metal complexes, iron systems
Computational Techniques	DMRG, Selected Configuration Interaction, Quantum Embedding
Machine Learning Integration	Promising potential for parameter optimization
Quantum Computing Perspective	Hybrid classical-quantum embedding pathway
Computational Scalability	Polynomial vs exponential scaling breakthrough
Major Challenge Addressed	Strong electron correlation in molecular systems
Technical Precision	High mathematical rigor and computational detail
