

A Tutorial Review of the Physiological Paradox of Extreme Endurance Exercise: Biochemical Alterations, Cardiovascular Adaptations, and Mortality Outcomes in Marathon, Ultramarathon, and Ironman Athletes

Authors: Research Synthesis Report

Date: January 20, 2026

Keywords: *Extreme endurance sports, oxidative stress, cardiac biomarkers, inflammatory response, mortality, dose-response, survival analysis, tutorial review*

Abstract

The dramatic proliferation of participation in extreme endurance sports—marathons, ultramarathons, and Ironman triathlons—has precipitated a critical re-examination of the dose-response relationship between physical activity and health outcomes. While the cardioprotective benefits of moderate exercise are well-established, the physiological consequences of chronic, high-volume endurance training present a considerably more nuanced paradigm. **This tutorial review combines narrative synthesis of the empirical literature with illustrative mathematical models and simulations to provide an educational overview of this complex field.** The pedagogical intent is to equip clinicians, researchers, athletes, and students with both conceptual understanding and quantitative tools for interpreting the evidence.

The biochemical investigation reveals that extreme endurance events trigger profound systemic alterations, including elevations in reactive oxygen species production that may transiently exceed antioxidant defences, transient elevations in cardiac biomarkers (troponin I/T, BNP, NT-proBNP) that, while exceeding conventional diagnostic thresholds, appear mechanistically and prognostically distinct from those observed in acute myocardial infarction, dramatic inflammatory cascades with interleukin-6 concentrations reaching elevated levels (though in a different pathophysiological context than sepsis-induced elevations), and exertional rhabdomyolysis with creatine kinase values that may exceed 100,000 U/L.

Epidemiologically, available data suggest a J-shaped or U-shaped dose-response curve for all-cause mortality, wherein the Copenhagen City Heart Study demonstrated that light joggers exhibited a substantial mortality risk reduction (HR: 0.22; 95% CI: 0.10–0.47) compared to sedentary individuals, whilst strenuous joggers showed no statistically significant mortality benefit (HR: 1.97; 95% CI: 0.48–8.14). **Importantly, confidence intervals widen substantially at the extreme tail of the dose-response curve, and data for very high exercise volumes remain limited.**

1. Introduction

1.1 The Emergence of Extreme Endurance Sports as a Mass Phenomenon

The twenty-first century has witnessed an unprecedented surge in participation in extreme endurance athletic events, transforming what were once the exclusive domains of elite athletes into mass-participation phenomena attracting millions of amateur competitors annually. Marathon running, once considered the pinnacle of human endurance capability, has been surpassed by ultramarathons extending beyond 100 kilometres, multi-day staged races, and Ironman-distance triathlons comprising 3.86-kilometre swims, 180.25-kilometre bicycle rides, and 42.2-kilometre runs completed consecutively.

The fundamental premise underlying public health exercise guidelines—that physical activity confers substantial protection against cardiovascular disease, metabolic dysfunction, and premature mortality—remains scientifically robust and universally endorsed. Large-scale epidemiological investigations have consistently demonstrated that increasing volumes of physical activity are associated with 20% to 50% reductions in all-cause mortality and 30% to 50% reductions in cardiovascular mortality (Arem et al., 2015; Ekelund et al., 2019).

However, the extrapolation of these benefits to the extreme upper ranges of exercise volume and intensity has been challenged by accumulating evidence suggesting that the dose-response relationship between exercise and health outcomes may not be monotonically linear but rather may follow J-shaped or U-shaped curves for certain outcomes. This phenomenon, termed the "extreme exercise hypothesis," proposes that whilst the transition from sedentary behaviour to moderate physical activity yields the greatest health dividends, at very high training doses these benefits may plateau or, in certain domains, even partially attenuate. **It should be noted that this hypothesis remains an area of active debate, with substantial uncertainty regarding the shape of the curve at extreme exercise volumes due to limited sample sizes in this population.**

1.2 Defining the Less Obvious Extreme Sports

This review deliberately focuses upon endurance disciplines that, whilst extreme in their physiological demands, may not be immediately perceived by the general public as carrying significant health risks. Unlike combat sports, BASE jumping, or alpine mountaineering—activities with self-evident acute mortality hazards—marathon running, ultramarathon competition, and Ironman triathlons are often promoted as pinnacles of healthy achievement.

Marathon Running (42.195 kilometres): The marathon, standardised to its current distance following the 1908 London Olympic Games, represents a duration of sustained high-intensity cardiovascular exertion typically lasting between 2.5 and 6 hours for amateur competitors. Despite its status as a mainstream participation event, the physiological stress imposed by marathon running is substantial.

Ultramarathon Running (>42.195 kilometres): Ultramarathon events encompass any foot race exceeding the standard marathon distance, with common formats including 50-kilometre, 100-kilometre, 100-mile, and multi-day staged events. These events impose physiological stresses of qualitatively different magnitude than marathons, with competition durations spanning 6 to 48 hours and beyond.

Ironman Triathlon (3.86 km swim / 180.25 km cycle / 42.2 km run): The Ironman-distance triathlon, established in 1978 in Hawaii, combines three demanding endurance disciplines into a single continuous event typically requiring 8 to 17 hours of exertion.

1.3 The Biochemical Basis of Physiological Alterations

1.3.1 Oxidative Stress and Cellular Injury

Extreme endurance exercise dramatically amplifies whole-body oxygen consumption, with elite athletes achieving maximal oxygen uptake ($V\text{O}_{\text{max}}$) values exceeding 70 mL/kg/min and sustaining exercise intensities of 60–85% $V\text{O}_{\text{max}}$ for prolonged durations. This substantial increase in mitochondrial electron transport chain activity may accelerate the generation of reactive oxygen species (ROS), including superoxide anion (O_2^-), hydrogen peroxide (H_2O_2), and the highly reactive hydroxyl radical (OH^\bullet).

1.3.2 Cardiac Biomarker Elevation

Perhaps no aspect of the biochemical response to extreme endurance exercise has generated more clinical concern than the transient elevation of cardiac-specific biomarkers conventionally employed to diagnose acute myocardial infarction. Following marathon, ultramarathon, and Ironman competitions, a substantial proportion of participants—reported as 47% to 74% depending upon assay sensitivity and study population—exhibit troponin concentrations exceeding the upper reference limits used for diagnosing myocardial infarction (Shave et al., 2010; Neilan et al., 2006).

Critically, exercise-induced troponin elevation appears to be mechanistically and prognostically distinct from the troponin elevation observed in acute myocardial infarction, and these two phenomena should not be considered clinically equivalent. The distinction lies in the kinetics of the biomarker response. In acute coronary syndromes, troponin concentrations rise progressively, peak at 12–24 hours, and remain elevated for days to weeks. In contrast, exercise-induced elevations typically peak immediately post-event and return to baseline within 24–72 hours, suggesting a fundamentally different pathophysiological mechanism.

1.3.3 Systemic Inflammatory Response

The inflammatory response to extreme endurance exercise can be substantial in magnitude, **though it occurs in a different pathophysiological context than inflammation observed in pathological states such as sepsis or major trauma, and direct comparisons of cytokine levels between these conditions should be interpreted with caution.** The cytokine interleukin-6 (IL-6) occupies a central position in the exercise-induced inflammatory cascade, being released in considerable quantities from contracting skeletal muscle fibres where it functions as a "myokine" with metabolic and immunomodulatory roles (Pedersen & Febbraio, 2008).

Importantly, exercise-derived IL-6 exerts predominantly anti-inflammatory and metabolic regulatory effects, in contrast to the pro-inflammatory context of IL-6 elevation in sepsis or chronic inflammatory diseases.

2. Review Methods

2.1 Search Strategy and Literature Selection

This tutorial review employs a narrative synthesis methodology designed to provide a comprehensive educational overview of the physiological effects of extreme endurance exercise. The narrative approach was selected to allow integration of diverse evidence types, including epidemiological cohort studies, clinical biomarker studies, and mechanistic physiological research, whilst incorporating illustrative mathematical models for pedagogical purposes.

Literature searches were conducted in PubMed, Scopus, and Web of Science databases using combinations of population terms ("marathon," "ultramarathon," "Ironman," "triathlon," "endurance athlete"), outcome terms ("mortality," "cardiovascular," "cardiac biomarker," "troponin," "oxidative stress"), and design terms ("cohort study," "meta-analysis," "dose-response").

2.2 Distinction Between Empirical Evidence and Illustrative Models

A critical methodological note: This tutorial review presents two distinct types of information:

- 1. Empirical data from published studies:** Quantitative findings, statistical estimates, and prevalence figures derived from actual clinical and epidemiological research, cited to their original sources.
- 2. Illustrative simulations and theoretical models:** Mathematical demonstrations generated for pedagogical purposes, based on physiological principles and literature-derived parameters, but not representing direct measurements from specific studies. These are clearly identified as "illustrative" or "theoretical" throughout the text and figure captions.

This distinction is essential for readers to appropriately weigh the evidence presented. Where illustrative models are used, they are intended to demonstrate concepts and quantitative relationships rather than to provide precise empirical estimates.

3. Methodology: Mathematical and Statistical Frameworks

3.1 Overview of Analytical Frameworks

This section presents the mathematical and statistical models employed throughout this review to quantify the relationships between extreme endurance exercise exposure and physiological, biochemical, and mortality outcomes. **The equations presented here are standard models from biostatistics and physiology; their application to specific datasets may yield different parameter estimates depending on the study population.**

3.2 Survival Analysis Methods

3.2.1 The Cox Proportional Hazards Model

The Cox proportional hazards model, introduced by Sir David Cox in 1972, represents the most widely employed regression framework for survival analysis in biomedical research. The hazard function $\lambda(t|X)$ represents the instantaneous rate of event occurrence at time t for an individual with covariate vector X :

$$\lambda(t|x) = \lambda_0(t) \cdot \exp(\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)$$

The model decomposes the hazard into two multiplicative components: (1) the baseline hazard function $\lambda_0(t)$, representing the hazard rate for an individual with all covariates equal to zero, and (2) the exponential risk score $\exp(X\beta)$, quantifying the multiplicative effect of covariates on the hazard.

Application to Copenhagen City Heart Study Data:

Jogging Category	β (log-HR)	HR	95% CI
Sedentary (reference)	0.00	1.00	—
Light joggers	-1.51	0.22	0.10–0.47
Moderate joggers	-0.42	0.66	0.32–1.38
Strenuous joggers	0.68	1.97	0.48–8.14

Important caveats: The wide confidence interval for strenuous joggers (0.48–8.14) spans both substantial benefit and substantial harm, indicating considerable uncertainty. The relatively small number of deaths in this category ($n=2$) limits statistical precision.

3.3 Dose-Response Models for Exercise and Health Outcomes

The relationship between exercise dose (volume \times intensity) and health outcomes is not adequately captured by simple linear models. Empirical evidence supports more complex functional forms, including J-curves, U-curves, and threshold models. **However, considerable uncertainty remains regarding the shape of the dose-response curve at extreme exercise volumes, where data are sparse.**

The U-shaped or J-shaped dose-response relationship is commonly modelled using a quadratic function:

$$HR(x) = \alpha + \beta_1 x + \beta_2 x^2$$

The exercise dose minimising hazard is found by setting the first derivative equal to zero, yielding:
 $x_{\text{optimal}} = -\beta_1 / (2\beta_2)$. For a true U-shaped relationship, we require $\beta_1 < 0$ (initial benefit) and $\beta_2 > 0$ (eventual flattening or increase).

4. Results

4.1 Overview of Data Visualisations

Six figures were generated to illustrate the key relationships between extreme endurance exercise and physiological outcomes. **Important note on data sources:** The figures presented include a combination of (1) visualisations based on empirical data from published studies, with sources cited, and (2) illustrative simulations based on theoretical models with literature-derived parameters. Each figure caption clearly identifies the data source type.

4.2 The J-Curve/U-Curve of Exercise Dose and Mortality Risk (Figure 1)

Data source: Empirical data points derived from the Copenhagen City Heart Study (Schnohr et al., 2015), with fitted quadratic curve for illustrative purposes.

Key observations: (1) The steepest risk reduction occurs during the transition from sedentary to light activity—this finding is robust across multiple studies; (2) Diminishing returns are evident beyond moderate activity levels; (3) The wide confidence intervals at highest activity levels (0.48–8.14) reflect very small sample sizes and preclude definitive conclusions about risk at extreme exercise volumes; (4) Selection bias and the healthy survivor effect may influence estimates at high exercise levels.

4.3 Cardiac Biomarker Elevation Timeline (Figure 2)

Data source: Illustrative simulation based on pooled literature values from studies of marathon and ultramarathon participants (Shave et al., 2010; Neilan et al., 2006).

Troponin I dynamics show pre-event baseline values <0.02 µg/L, peaking immediately post-event at 0.08–0.15 µg/L, and returning to baseline within 72 hours. The upper reference limit for myocardial infarction diagnosis (typically 0.04 µg/L) is exceeded in 47–74% of ultramarathon finishers, yet the rapid normalisation and absence of accompanying clinical symptoms distinguish this phenomenon from pathological myocardial injury.

4.4 Mortality Hazard Ratios Across Exercise Groups (Figure 4)

Data source: Empirical data from the Copenhagen City Heart Study (Schnohr et al., 2015).

Critical observations: Light exercise demonstrates the most favourable hazard ratio, with substantial and statistically significant mortality reduction (78%). Moderate exercise maintains apparent benefit but with wider confidence intervals. Extreme exercise shows a point estimate greater than 1.0; however, the very wide confidence interval (0.48–8.14) includes both 52% risk reduction and 714% risk increase. This uncertainty precludes definitive conclusions about mortality risk at extreme exercise levels.

4.5 Myocardial Fibrosis Prevalence Comparison (Figure 6)

Data source: Empirical data compiled from published studies including Wilson et al. (2011) and Schnell et al. (2017).

The elevated prevalence of myocardial fibrosis in endurance athletes is an important finding; however, interpretation requires consideration of several factors: (1) Not all late gadolinium enhancement patterns carry equal prognostic significance; (2) The long-term outcomes for athletes with detected fibrosis remain incompletely characterised; (3) Studies often recruit from referral populations, potentially overestimating prevalence.

5. Discussion

5.1 The Benefits of Extreme Endurance Sports

Despite the biochemical perturbations and potential cardiovascular adaptations documented in this review, extreme endurance sports participation confers numerous substantial benefits. The Aerobics Center Longitudinal Study documented a 30% reduction in all-cause mortality and 45% reduction in cardiovascular mortality among runners compared to non-runners, translating to an estimated three-year life expectancy gain (Lee et al., 2014). Crucially, these benefits were evident even at relatively modest running volumes.

Elite and lifelong endurance athletes, as a population, generally exhibit lower incidences of cardiovascular disease, type 2 diabetes, and cancer compared to age-matched controls. The physiological adaptations induced by chronic endurance training—including enhanced cardiac contractility, improved endothelial function, favourable lipid profiles, and insulin sensitivity—provide mechanistic explanations for these protective effects.

5.2 The J-Curve Hypothesis: Evidence and Uncertainty

The hypothesis that very high exercise volumes may attenuate or partially reverse the mortality benefits of physical activity has generated substantial scientific interest. **However, the evidence base for harm at extreme exercise volumes has important limitations that warrant explicit acknowledgment:**

Statistical Uncertainty at the Extremes: The widening confidence intervals observed at high exercise volumes reflect fundamental data limitations: very few individuals exercise at extreme volumes, the number of deaths in extreme exerciser groups is typically small, and the Copenhagen study's HR of 1.97 has a 95% CI of 0.48–8.14, consistent with effects ranging from 52% risk reduction to 714% risk increase.

Selection Bias and Confounding: Individuals who successfully maintain extreme training volumes may represent a selected population with favourable genetics and baseline health. People who choose extreme endurance sports may differ systematically from the general population in ways not fully captured by statistical adjustment.

Interpretation Framework: Given these limitations: (1) Strong evidence supports that transitioning from sedentary behaviour to moderate physical activity substantially reduces mortality risk; (2) Moderate evidence suggests mortality benefits may diminish at higher exercise volumes; (3) Whether extreme exercise volumes cause net harm remains unestablished.

5.3 Myocardial Fibrosis: Heterogeneity, Patterns, and Prognostic Uncertainty

The finding of elevated myocardial fibrosis prevalence in endurance athletes requires nuanced interpretation. Cardiac MRI can detect two fundamentally different types: **Replacement fibrosis** (results from cardiomyocyte death, typically seen after myocardial infarction) and **Interstitial fibrosis** (expansion of extracellular matrix without cardiomyocyte loss, potentially more reversible).

The most common pattern in endurance athletes—right ventricular insertion point enhancement—occurs at areas of maximum mechanical stress and may differ in significance from patterns suggestive of prior myocarditis or ischaemic injury. The long-term clinical outcomes for athletes with myocardial fibrosis remain incompletely characterised.

5.4 Societal and Philosophical Considerations

Adults possess the autonomy to engage in activities carrying health considerations, provided they are adequately informed. Perhaps the most important contextualisation is that the health risks of extreme endurance exercise, whatever they may be, pale in comparison to the risks of sedentary behaviour. Physical inactivity is estimated to cause 6–10% of major non-communicable diseases worldwide. The debate about whether 15 hours of weekly training is marginally less beneficial than 5 hours must not distract from the urgent public health priority of reducing sedentary behaviour.

6. Conclusion

6.1 Summary of Key Findings

Biochemical Alterations (Empirical Evidence): Extreme endurance events induce oxidative stress, with ROS production that may transiently exceed antioxidant defences. Cardiac biomarkers transiently exceed clinical thresholds in 47–74% of participants, but these elevations are mechanistically and prognostically distinct from those in acute myocardial infarction. Inflammatory responses include substantial IL-6 elevations, though in a different pathophysiological context than sepsis-associated inflammation.

Epidemiological Patterns (Empirical Evidence with Important Caveats): The dose-response relationship between exercise and mortality appears to follow a J-shaped or U-shaped curve, with greatest benefit from moderate activity. Light exercise shows substantial mortality reduction (HR: 0.22). **At extreme exercise volumes, statistical uncertainty is substantial, and potential biases may influence estimates.**

6.2 Clinical Implications

For clinicians, the evidence supports continued advocacy for physical activity as a cornerstone of preventive health, awareness that extreme endurance athletes may warrant attention to specific cardiovascular considerations, and recognition that transient post-exercise biomarker elevation is generally considered benign. Management decisions should be individualised, acknowledging current uncertainty about prognostic significance.

For athletes, the evidence suggests that the greatest mortality benefits accrue from transitioning from sedentary behaviour to regular moderate exercise, that participation in extreme endurance sports is compatible with overall longevity, and that attention to warning symptoms is warranted.

6.3 Final Perspective

Even at the highest training volumes, endurance athletes as a population demonstrate longevity comparable to or superior to sedentary individuals. The relevant comparison is not between extreme athletes and optimal exercisers, but between physically active and sedentary lifestyles. The pursuit of extreme physical achievement is a fundamentally human endeavour. The scientific evidence reviewed here does not argue against this pursuit, but rather informs it.

As this field continues to evolve, we anticipate that longitudinal studies with clinical endpoints will provide clearer answers to the questions that remain uncertain. Until then, a balanced interpretation that acknowledges both what we know and what we don't know serves athletes and clinicians best.

References

1. Arem, H., et al. (2015). Leisure time physical activity and mortality: A detailed pooled analysis of the dose-response relationship. *JAMA Internal Medicine*, 175(6), 959–967.
2. Banfi, G., et al. (2012). Metabolic markers in sports medicine. *Advances in Clinical Chemistry*, 56, 1–54.
3. Cox, D. R. (1972). Regression models and life-tables. *Journal of the Royal Statistical Society: Series B*, 34(2), 187–202.
4. Eijsvogels, T. M., et al. (2016). Are there deleterious cardiac effects of acute and chronic endurance exercise? *Physiological Reviews*, 96(1), 99–125.
5. Ekelund, U., et al. (2019). Dose-response associations between accelerometry measured physical activity and all cause mortality. *BMJ*, 366, I4570.
6. Kim, J. H., et al. (2012). Cardiac arrest during long-distance running races. *NEJM*, 366(2), 130–140.
7. Lee, D. C., et al. (2014). Leisure-time running reduces all-cause and cardiovascular mortality risk. *JACC*, 64(5), 472–481.
8. Mont, L., et al. (2009). Endurance sport practice as a risk factor for atrial fibrillation. *Europace*, 11(1), 11–17.
9. Neilan, T. G., et al. (2006). Myocardial injury and ventricular dysfunction related to training levels. *Circulation*, 114(22), 2325–2333.
10. Pedersen, B. K., & Febbraio, M. A. (2008). Muscle as an endocrine organ. *Physiological Reviews*, 88(4), 1379–1406.
11. Powers, S. K., & Jackson, M. J. (2008). Exercise-induced oxidative stress. *Physiological Reviews*, 88(4), 1243–1276.
12. Schnell, F., et al. (2017). Subepicardial delayed gadolinium enhancement in asymptomatic athletes. *BJSM*, 51(13), 1013–1018.
13. Schnohr, P., et al. (2015). Dose of jogging and long-term mortality: The Copenhagen City Heart Study. *JACC*, 65(5), 411–419.
14. Shave, R., et al. (2010). Exercise-induced cardiac troponin elevation. *JACC*, 56(3), 169–176.
15. Wilson, M., et al. (2011). Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes. *J Appl Physiol*, 110(6), 1622–1626.