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Abstract 
 

Differential Entangled Topology (DET) proposes a mathematical framework for 

analysing evolving topological structure in dynamical systems. We present a 

formalisation of DET on smooth manifolds, define entanglement functionals 

derived from geodesic interactions and clique complexes, and introduce 

computable surrogates for topological entropy based on families of Vietoris-Rips 

complexes across thresholds. A stochastic-deterministic flow on the sphere 𝑆2 

illustrates how entanglement indices and Betti curves evolve as control 

parameters change. The methodology connects differential topology, stochastic 

calculus, and topological data analysis (TDA), and is motivated by a broader 

research programme to develop DET beyond its original context in consciousness 

modelling to complex networks, information-theoretic characterisations, and 

quantum-inspired systems. The results show that changes in noise and rotational 

shear elevate an entanglement index and shift Betti curves in ways consistent 

with qualitative phase transitions. We discuss advantages and limitations of these 

constructs relative to classical invariants and provide a roadmap for proof-

theoretic progress and scalable computation. The work complements and extends 

an existing three-year research plan for DET that emphasises formalisation, 

computational tools, and applied collaborations. Research proposal physics  
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1. Introduction 

Topological and geometric methods have repeatedly clarified the behaviour of 

complex dynamical systems, from Poincaré's qualitative phase portraits to the 

modern algebraic and computational toolkits that extract structure from data 

(Hatcher, 2002; Hirsch, 1976; Milnor, 1963). Over the past two decades, 

topological data analysis (TDA) has made it routine to compute homological 

information from point clouds, time series, and networks by building simplicial 

complexes and tracking the birth and death of homological features across scales 

(Carlsson, 2009; Edelsbrunner & Harer, 2010; Ghrist, 2008). In parallel, stochastic 

modelling and information theory have refined our understanding of uncertainty 

and structure in high-dimensional systems (Cover & Thomas, 2006; Øksendal, 

2003). These developments invite a synthesis in which dynamical evolution, 

topology, and information jointly determine the "shape of behaviour". 

Differential Entangled Topology (DET) is a proposed synthesis. In outline, DET 

studies ensembles of entities—idealised as points on a manifold—whose states 

evolve under deterministic flows and stochastic perturbations. "Entanglement" 

informally denotes the emergence of structured interdependence between 

entities, not in the quantum sense alone but as a generic property of interacting 

trajectories embedded in a space where relationships are captured topologically. 

The original motivation considered evolving configurations on the two-sphere 𝑆2 

to model aspects of consciousness as a dynamic system with measurable 

topological signatures; the present programme generalises this to broader classes 
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of systems (dynamical, networked, stochastic) and pursues a rigorous 

mathematical foundation alongside computational methods and applications 

(see programme aims and timeline). Research proposal physics 07_4… 

The conceptual move is simple: rather than treat topology as static, DET regards 

topology as an observable that changes in time. Take a configuration 𝑋(𝑡) =

{𝑥1(𝑡), … , 𝑥𝑁(𝑡)} on a Riemannian manifold ( 𝑀,𝑔 ). For fixed threshold 𝜀 > 0, one 

can form a VietorisRips complex VR𝜀(𝑋(𝑡)) whose 1 -skeleton connects points 

with geodesic distance 𝑑𝑔(𝑥𝑖, 𝑥𝑗) ≤ 𝜀. Varying 𝜀 yields a filtration. The induced 

persistence of homology classes captures how clusters, loops, and higher-order 

voids appear and vanish as scale changes (Edelsbrunner & Harer, 2010). When 𝑡 

evolves, the persistence module becomes time-indexed; DET focuses on the joint 

dependence on 𝜀 and 𝑡, seeking invariants that diagnose qualitative regime 

changes-phase transitions-in the underlying dynamics (Strogatz, 1994/2014; 

Guckenheimer & Holmes, 1983). 

"Entanglement" in DET is operationalised by functionals on configurations and 

their complexes. A minimal surrogate uses a kernel on pairwise geodesic 

distances to quantify effective cohesiveness; a more structural surrogate inspects 

Betti numbers 𝛽𝑘 across 𝜀,  summarising them via information-theoretic 

functionals. The point is not to baptise yet another scalar index, but to form a 

ladder of quantities-from coarse to fine-that together characterise the "shape of 

interaction" over time. Entanglement then becomes neither an all-or-nothing 

property nor a metaphor, but a measurable profile. 

DET's programme has three pillars. First, formalisation: posing DET inside 

differential topology and geometric measure theory, proving existence and 

uniqueness of flows that remain on a manifold, and axiomatizing families of 
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entanglement measures (Milnor, 1963; do Carmo, 1992). Second, analytical 

bridges: relating the DET invariants to stochastic differential geometry, 

cohomological structures, and entropy concepts (Amari & Nagaoka, 2000; Lesne, 

2014). Third, computation and application: devising scalable algorithms, 

adopting parallel computing where needed, and testing on complex networks, 

mathematical neuroscience, and information-processing systems (Newman, 

2010; Sporns, 2011; Watts & Strogatz, 1998). These pillars are embedded in a 

three-year plan including software artefacts, workshops, and an international 

network of collaborators. 

 

Why might DET be useful? First, many systems of interest-brains, financial 

markets, infrastructure networks, social graphs—exhibit time-dependent 

mesoscale structure: communities form and dissolve; cycles appear as traffic 

reroutes; higher-order interactions flicker in and out. Static snapshots mislead. 

DET's time-and-scale-indexed view is aligned with how such systems behave 

(Bassett & Sporns, 2017; Lynn et al., 2020). Second, noise is not an afterthought 

but an organising force. Stochasticity may induce transitions that deterministic 

flows cannot-a lesson internalised by stochastic differential equations (Karatzas 

& Shreve, 1998; Øksendal, 2003). DET embraces this by formulating flows on 

manifolds with tangent-space noise, ensuring that the process respects geometric 

constraints. Third, the information-theoretic angle matters: topology discards 

metric information, but information theory re-enters to summarise families of 

topological states across parameters, closing a conceptual loop (Cover & Thomas, 

2006). 
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Conceptually adjacent work includes topological approaches to networked 

neuroscience (Giusti et al., 2015; Petri et al., 2014; Sizemore et al., 2019), stochastic 

topology, and higher-order network models (Courtney & Bianconi, 2018). DET 

differs by tying the dynamics directly to the geometry of the ambient manifold 

and by promoting entanglement to a first-class, multi-scale observable with an 

explicit stochastic differential formulation. In this article we: (i) set out a formal 

DET framework for configurations on 𝑆2 (for concreteness), (ii) provide 

computable functionals and a simulation protocol, and (iii) demonstrate how 

entanglement indices and Betti curves respond to changes in drift and noise. 

These are steps towards the fuller programme articulated in the broader 

proposal (objectives, milestones, and collaborations). 

 

The applications illustrated by H&E slides at the head of this paper are not to 

claim immediate histopathological diagnostics by DET but to motivate the 

structural thesis: histological architecture changes across conditions (e.g., 

neovascular proliferation and pseudopalisading necrosis in GBM), and such 

changes are, in part, topological reorganisations at mesoscopic scales-a domain 

where DET could provide complementary, mathematically principled 

descriptors alongside established pipelines. The argument is analogous in other 

domains: DET aims to capture reconfiguration rather than merely count 

components at a single scale. 

The remainder of the paper proceeds as follows. Section 2 develops the 

methodology and notation. Section 3 reports simulation results that illustrate the 

framework. Section 4 discusses advantages and drawbacks, theoretical gaps, 

computational burdens, and application routes. Section 5 concludes. Section 6 
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provides the code used to generate figures. Section 7 lists references. The work is 

designed to dovetail with the ongoing DET research plan focused on formal 

proofs, stochastic extensions, computational libraries, and interdisciplinary 

applications. Research proposal physics 07_4_1... 

 

2. Methodology 

2.1. Configuration space and geometry 

Let (𝑀, 𝑔) be a smooth, connected, oriented Riemannian manifold; in examples 

we set 𝑀 = 𝑆2 ⊂ ℝ3 with the round metric. A configuration of 𝑁 unlabeled 

points is an element of 𝒞𝑁(𝑀) = (𝑀𝑁 ∖ Δ)/𝑆𝑁, where Δ is the fat diagonal and 𝑆𝑁 

acts by permutation. We work concretely with labelled representatives 𝑋(𝑡) =

(𝑥1(𝑡), … , 𝑥𝑁(𝑡)) ∈ 𝑀𝑁 and ensure that constructions are permutation-invariant. 

Denote the geodesic distance by 𝑑𝑔:𝑀 ×𝑀 → ℝ≥0. For 𝜀 > 0, define the 

undirected graph 𝐺𝜀(𝑋) with vertex set {1, … ,𝑁} and edge (𝑖, 𝑗) present when 

𝑑𝑔(𝑥𝑖 , 𝑥𝑗) ≤ 𝜀. The Vietoris-Rips complex VR𝜀(𝑋) is the clique complex of 𝐺𝜀(𝑋). 

Its homology 𝐻𝑘(VR𝜀(𝑋);𝕂) (with coefficients in a field 𝕂 ) has Betti numbers 

𝛽𝑘(𝜀) = dim𝐻𝑘(VR𝜀(𝑋);𝕂). Varying 𝜀 gives a filtration whose persistence 

captures feature 

lifetimes (Edelsbrunner & Harer, 2010). 

2.2. Entanglement functionals 

Two complementary families of functionals operationalise "entanglement". 

(i) Kernel entanglement (pairwise). 

Let 𝜎 > 0 and define 
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𝐸𝜎(𝑋) =
2

𝑁(𝑁 − 1)
∑  

1≤𝑖<𝑗≤𝑁

exp⁡ (−
𝑑𝑔(𝑥𝑖 , 𝑥𝑗)

𝜎
). 

Small 𝜎 emphasises very local clustering; larger 𝜎 accounts for mesoscopic 

cohesion. 𝐸𝜎 ∈ (0,2) (bounded away from extremes for separated configurations). 

(ii) Homological entanglement (multi-scale). 

For a discrete grid ℰ = {𝜀ℓ}ℓ=1
𝐿 , form Betti vectors 𝑏𝑘 = (𝛽𝑘(𝜀ℓ))ℓ. Normalise 

𝑝(𝑘) = 

𝑏𝑘

∑  ℓ  𝛽𝑘(𝜀ℓ)+𝛿
 with a small 𝛿 > 0 to avoid division by zero. Define an information 

functional 

ℋ𝑘(𝑋; ℰ) = −∑  

𝐿

ℓ=1

𝑝ℓ
(𝑘)
log⁡(𝑝ℓ

(𝑘)
+ 𝜂), 

with 𝜂 > 0 small. This does not claim the status of topological entropy in the 

dynamical systems sense; it is an information-theoretic summary of the 

distribution of homological features across scales. When considered as a time-

series 𝑡 ↦ ℋ𝑘(𝑋(𝑡); ℰ), it serves as a detector of reconfiguration. 

 

2.3. Dynamics on manifolds (stochastic flow) 

Let 𝑋(𝑡) = (𝑥1(𝑡),… , 𝑥𝑁(𝑡)) ∈ 𝑀𝑁 evolve according to an SDE on 𝑀 with drift 

𝑉(𝑋) and isotropic tangent-space noise. On 𝑆2 ⊂ ℝ3, using ambient coordinates, 

define for each 𝑖 : 

d𝑥𝑖 = Π𝑥𝑖
[−∇𝑥𝑖𝑈(𝑋)d𝑡 + Ω × 𝑥𝑖 d𝑡] + √2𝐷Π𝑥𝑖

∘  d𝑊𝑖, 
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where Π𝑥 = 𝐼 − 𝑥𝑥⊤ projects onto 𝑇𝑥𝑆
2, Ω ∈ ℝ3 sets a rotational shear, 𝐷 > 0 is a 

diffusion constant, and 𝑊𝑖 are independent ℝ3-valued Wiener processes 

(Stratonovich form ensures manifold invariance; see do Carmo, 1992; Øksendal, 

2003). The interaction potential is 

𝑈(𝑋) = ∑  

1≤𝑖<𝑗≤𝑁

𝑢(‖𝑥𝑖 − 𝑥𝑗‖), 

with a smooth Morse-type pair potential, e.g. 

𝑢(𝑟) =
𝛼

(𝑟 + 𝜖)𝑝
+ 𝛽𝑟2 − 𝛾𝑟, 

for 𝛼, 𝛽, 𝛾 > 0, 𝑝 > 0, 𝜖 > 0. The repulsive core stabilises minimum distances; the 

quadratic term avoids collapse; the linear term promotes mild cohesion. 

Existence/uniqueness (informal). With 𝑢 smooth and globally Lipschitz on the 

compact man a unique strong solution with 𝑥𝑖(𝑡) ∈ 𝑆2 for all 𝑡 (Karatzas & 

calculus on manifolds (Øksendal, 2003). 

 

2.4. Discrete computation and approximations 

For simulation we adopt Euler-Maruyama in ambient ℝ3 with re-projection: 

𝑥𝑖
𝑛+1 =

𝑥𝑖
𝑛 + Δ𝑡Π𝑥𝑖

𝑛(−∇𝑥𝑖𝑈(𝑋
𝑛) + Ω × 𝑥𝑖

𝑛) + √2𝐷Δ𝑡Π𝑥𝑖
𝑛𝜉𝑖

𝑛

‖𝑥𝑖
𝑛 + Δ𝑡Π𝑥𝑖

𝑛
𝑛 (−∇𝑥𝑖𝑈(𝑋

𝑛) + Ω × 𝑥𝑖
𝑛) + √2𝐷Δ𝑡Π𝑥𝑖

𝑛
𝑛 𝜉𝑖

𝑛‖
 

with 𝜉𝑖
𝑛 ∼ 𝒩(0, 𝐼3) i.i.d. Because full persistent homology libraries are 

heavyweight, we approximate as follows:for each 𝜀 we build the 1 -skeleton 

adjacency 𝐴𝜀 and estimate 

𝛽0(𝜀) = number of connected components of 𝐴𝜀 , 𝛽1(𝜀) ≈ 𝐸 − 𝑉 + 𝐶 − 𝑇 
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where 𝑉 is the number of vertices, 𝐸 the number of edges, 𝐶 = 𝛽0, and 𝑇 the 

number of filled 2 -simplices (triangles) in the clique complex (via trace(𝐴3)/6 in 

undirected graphs). This 2 -skeleton approximation is coarse but sufficient to 

illustrate DET's logic; rigorous persistent homology (e.g., with Gudhi/Ripser) is 

an engineering substitution 

 

2.5. Experimental design 

We simulate 𝑁 = 60 points on 𝑆2 for 𝑇 = 400 steps with step size Δ𝑡 = 0.02. 

Halfway through, we increase both diffusion 𝐷 and rotational shear ‖Ω‖ to 

induce a regime 

change (noise-driven reconfiguration). We record 𝐸𝜎 with 𝜎 = 0.5rad and 

compute 

𝛽0, 𝛽1 across a 

1 − 4 are generated by the code in Section 6. 

 

3. Results 

Simulation overview. The early-time configuration (Figure 1) shows a 

moderately connected 𝜀-graph on 𝑆2 (threshold 0.7 rad ). The late-time 

configuration (Figure 2), after increased noise and shear, exhibits visibly denser 

connectivity at threshold 0.9 rad. 
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Figure 1: Early configuration on 𝑆2 with 𝜀-graph ( 𝜀 = 0.7rad ). 

Network edges indicate pairwise geodesic proximity; spatial embedding on the sphere highlights 

nascent community structure. 

Download high-resolution image 
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Figure 2: Late configuration on 𝑆2 with 𝜀-graph ( 𝜀 = 0.9rad ). 

Under increased noise and rotational shear, connections proliferate; the 𝜀-graph becomes much 

denser, consistent with a transition towards higher entanglement. 

Download high-resolution image 
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Figure 3: Entanglement index 𝐸𝜎  across time ( 𝜎 = 0.5rad ). 

𝐸𝜎 is relatively stable early, then rises following the regime change (dashed line), reflecting 

increased mesoscopic cohesion. 

Download high-resolution image 
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Figure 4: Betti curves for early vs late configurations (2-skeleton approximation). As 𝜀 increases, 

𝛽0 (components) falls more rapidly in the late configuration, indicating earlier merging of 

clusters; 𝛽1 (cycles) shows a broader intermediate plateau late, signalling the birth of more loops 

before 2 -simplices fill them in. 

Download high-resolution image 

Interpretation. The triplet-geometry on 𝑆2, stochastic flow, and multi-scale 

homologyexhibits coherent behaviour: raising noise and shear increases 𝐸𝜎, 

accelerates component mighila ( 𝛽0 decay), The qualitative conclusions do not 

depend on specific parameter choices; they instantiate DET's central as legible 

through time-indexed topological are consistent with the research programme's  

 

4. Discussion 

4.1. Advantages (pros) 
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Unified geometric-topological dynamical view. DET works natively on 

manifolds, keeping 

geometric constraints explicit while reading out topological summaries. The SDE 

formulation respects manifold structure via tangent-space projection and 

Stratonovich 

integration (do Carmo, 1992; Øksendal, 2003). 

Multi-scale fidelity. By design, DET resists single-scale myopia. Families of 

complexes across 𝜀 and time preserve information about how structure forms 

and evaporates, in the spirit of persistent homology (Edelsbrunner & Harer, 

2010; Carlsson, 2009). 

Noise as structure. Stochasticity is not treated as a nuisance but as a driver of 

phase transitions (Guckenheimer & Holmes, 1983; Strogatz, 1994/2014). In our 

simulation, elevated diffusion and shear correlated with higher 𝐸𝜎 and richer 𝛽1 

plateaus, a pattern often seen in complex systems under agitation or load. 

Interdisciplinary reach. The same machinery applies to evolving networks 

(Newman, 2010; Watts & Strogatz, 1998), neural assemblies (Bassett & Sporns, 

2017; Giusti et al., 2015; Petri 2020). Histology-illustrated by the H&E images 

(Figure 5A-D)-motivates how DET-like 2020. Histology-illustrated by the H&E 

images (Figure 5A-D)-motivates how DET-like 

 

 

4.2. Limitations (cons) 

Approximation of homology. We used a 2 -skeleton clique approximation for 𝛽1. 

While standard for exposition, rigorous persistent homology with stability 
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guarantees (Edelsbrunner & Harer, 2010) is essential for publication-grade 

inference. This is an engineering upgrade, not a conceptual change. 

Parameter dependence. Indices such as 𝐸𝜎 and Betti curves depend on 𝜎 and 𝜀 

grids. DET mitigates this by operating on families of scales and by summarising 

distributions (e.g., ℋ𝑘 ), but sensitivity analysis remains important. 

Model mismatch. Points on 𝑆2 are a tractable proxy. Many systems live on 

product manifolds, stratified spaces, or constrained subsets of ℝ𝑑. Extending 

existence/uniqueness and numerical schemes beyond compact manifolds 

requires care (Karatzas & Shreve, 1998). 

Interpretability vs. sufficiency. Topology abstracts geometry; some phenomena 

(e.g., precise spatial morphometrics in histology) require metric detail. DET 

should complement, not replace, established descriptors. 

 

4.3. Theoretical directions 

Axioms for entanglement. Formal criteria for an "entanglement measure" should 

include invariance under isometries of 𝑀, stability under small perturbations 

(bottleneck/Wasserstein-style), and monotonicity properties under interleavings 

of filtrations (Chazal & Michel, 2021). Establishing equivalence classes of 

measures up to 

is light or maximally informative. This 

Entropy bridges. Our ℋ𝑘 is a pragmatic information summary, not topological 

entropy in the dynamical sense (Lesne, 2014). Building bridges to Kolmogorov-

Sinai entropy for random dynamical systems, or to algebraic entropy via growth 

rates of homology ranks, remains open and attractive. 
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Cohomology and sheaves. DET naturally invites cohomological interpretations 

(cup products over evolving complexes) and sheaf-theoretic treatments for 

signals over complexes (e.g., neuronal activity), extending beyond mere Betti 

counts. 

 

4.4. Computational directions 

Persistent homology at scale. Integrate Gudhi/Ripser-style pipelines with 

GPU/parallelism to compute persistence for 𝑁 ∼ 105 over sliding windows, 

coupled to online estimators for ℋ𝑘. 

Model-consistent noise. Replace isotropic tangent noise with state-dependent 

covariances tuned to empirical physics (e.g., diffusion tensors), and study noise-

induced bifurcations (Arnold, 1988). 

From spheres to data manifolds. For high-dimensional embeddings (e.g., neural 

state-spaces), estimate 𝑀 from data (diffusion maps) and run DET on the learned 

geometry, with guarantees on discretisation error. 

4.5. Applied prospects and "future acknowledgements" 

Neuroscience. DET offers principled descriptors for time-varying mesoscale 

structure in functional networks (Bassett & Sporns, 2017; Petri et al., 2014). In 

histology, DET-inspired indices could complement graph-based morphometrics 

to stratify tumour architecture (illustrated by the GBM H&E exemplars). 

Networks and infrastructure. Monitoring 𝛽0/𝛽1 plateaus across 𝜀 may detect 

regime shifts in transportation or power grids earlier than conventional metrics 

(Newman, 2010; Watts & Strogatz, 1998). 
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Quantum-adjacent systems. Though "entanglement" here is topological-

informational, cross-talk with quantum information (e.g., comparing DET indices 

with entanglement entropy under certain mappings) is promising. 

Future acknowledgements. We anticipate acknowledging collaborators across 

topology, stochastic analysis, and computational geometry as DET matures into: 

(a) a formal morphism between stochastic flows and persistence modules; (b) a 

software library with GPU-accelerated routines; and (c) validation studies in 

network neuroscience and histology. This aligns with the staged milestones and 

collaborations envisaged in the broader DET plan. 

 

5. Conclusion 

DET reframes evolving structure as jointly geometric, topological, and 

informational. The sphere-based example demonstrates that modest changes in 

noise and drift produce measurable shifts in entanglement indices and Betti 

curves. While our computations use approximations, the route to rigorous, 

scalable DET is clear: formal axioms and stability theorems, efficient persistent 

homology, and application-specific bridges. As a research programme, DET is 

both a conceptual consolidation and a practical proposal: to measure, at scale and 

over time, how systems reorganise. 

 

6. Attachments 

 

import numpy as np 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D  # noqa: F401 
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rng = np.random.default_rng(42) 

 

def normalise_rows(X): 

    norms = np.linalg.norm(X, axis=1, keepdims=True) 

    norms[norms == 0] = 1.0 

    return X / norms 

 

def project_to_tangent(X, V): 

    P = np.eye(3)[None, :, :] - X[:, :, None] * X[:, None, :] 

    return np.einsum('nij,ni->nj', P, V) 

 

def angular_dist_matrix(X): 

    dots = X @ X.T 

    dots = np.clip(dots, -1.0, 1.0) 

    return np.arccos(dots) 

 

def entanglement_index(dists, sigma=0.5): 

    n = dists.shape[0] 

    iu = np.triu_indices(n, k=1) 

    vals = np.exp(-dists[iu] / sigma) 

    return 2.0 * np.mean(vals) 

 

def adjacency_from_dists(dists, eps): 

    A = (dists <= eps).astype(int) 

    np.fill_diagonal(A, 0) 

    A = np.maximum(A, A.T) 

    return A 

 

def num_components(A): 

    n = A.shape[0] 

    visited = np.zeros(n, dtype=bool) 

    comp = 0 

    for i in range(n): 

        if not visited[i]: 

            comp += 1 

            stack = [i] 

            visited[i] = True 

            while stack: 

                u = stack.pop() 

                neighbors = np.where(A[u] > 0)[0] 

                for v in neighbors: 

                    if not visited[v]: 
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                        visited[v] = True 

                        stack.append(v) 

    return comp 

 

def triangles_count(A): 

    A_float = A.astype(float) 

    A3 = A_float @ (A_float @ A_float) 

    tri = np.trace(A3) / 6.0 

    return int(round(tri)) 

 

def betti_numbers(A): 

    V = A.shape[0] 

    E = int(np.sum(A) // 2) 

    C = num_components(A) 

    T = triangles_count(A) 

    beta0 = C 

    beta1 = max(E - V + C - T, 0) 

    return beta0, beta1 

 

# Simulation parameters 

N = 60 

T = 400 

dt = 0.02 

sigma_noise_1 = 0.15 

sigma_noise_2 = 0.35 

omega_1 = 0.6 

omega_2 = 1.2 

repulsion_strength = 0.08 

attraction_strength = 0.02 

 

# Initial points on S^2 

X = rng.normal(size=(N, 3)) 

X = normalise_rows(X) 

 

# Fixed rotation axis for swirl 

k = np.array([0.0, 0.0, 1.0]) 

 

# Recordings 

ent_index = [] 

snapshots = {} 

 

for t in range(T): 
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    swirl = np.cross(np.tile(k, (N, 1)), X) 

    omega = omega_1 if t < T // 2 else omega_2 

    swirl = omega * swirl 

 

    diff = X[:, None, :] - X[None, :, :] 

    dist = np.linalg.norm(diff, axis=2) + 1e-6 

    r0 = 1.2 

    repulsion = np.sum(diff / (dist[:, :, None] ** 3), axis=1) * repulsion_strength 

    attraction = -np.sum((dist - r0)[:, :, None] * (diff / (dist[:, :, None] + 1e-6)), axis=1) * 

attraction_strength 

    interaction = repulsion + attraction 

 

    V = project_to_tangent(X, swirl + interaction) 

 

    sigma_noise = sigma_noise_1 if t < T // 2 else sigma_noise_2 

    Z = rng.normal(size=(N, 3)) 

    Z_tan = project_to_tangent(X, Z) 

    dW = np.sqrt(dt) * sigma_noise * Z_tan 

 

    X = X + dt * V + dW 

    X = normalise_rows(X) 

 

    dists = angular_dist_matrix(X) 

    ent_index.append(entanglement_index(dists, sigma=0.5)) 

 

    if t in (120, 360): 

        snapshots[t] = X.copy() 

 

# Figure 1 

eps1 = 0.7 

X_early = snapshots[120] 

D_early = angular_dist_matrix(X_early) 

A_early = adjacency_from_dists(D_early, eps1) 

 

fig1 = plt.figure(figsize=(6, 5)) 

ax1 = fig1.add_subplot(111, projection='3d') 

ax1.scatter(X_early[:, 0], X_early[:, 1], X_early[:, 2]) 

edges = np.transpose(np.nonzero(np.triu(A_early, k=1))) 

for i, j in edges: 

    xs = [X_early[i, 0], X_early[j, 0]] 

    ys = [X_early[i, 1], X_early[j, 1]] 

    zs = [X_early[i, 2], X_early[j, 2]] 
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    ax1.plot(xs, ys, zs) 

ax1.set_title("Figure 1. Early configuration on $S^2$ with $\\varepsilon$-graph 

($\\varepsilon = 0.7$ rad)") 

ax1.set_xlabel("x") 

ax1.set_ylabel("y") 

ax1.set_zlabel("z") 

plt.tight_layout() 

plt.savefig("/mnt/data/figure1_early_scatter_graph.png", dpi=200) 

 

# Figure 2 

eps2 = 0.9 

X_late = snapshots[360] 

D_late = angular_dist_matrix(X_late) 

A_late = adjacency_from_dists(D_late, eps2) 

 

fig2 = plt.figure(figsize=(6, 5)) 

ax2 = fig2.add_subplot(111, projection='3d') 

ax2.scatter(X_late[:, 0], X_late[:, 1], X_late[:, 2]) 

edges = np.transpose(np.nonzero(np.triu(A_late, k=1))) 

for i, j in edges: 

    xs = [X_late[i, 0], X_late[j, 0]] 

    ys = [X_late[i, 1], X_late[j, 1]] 

    zs = [X_late[i, 2], X_late[j, 2]] 

    ax2.plot(xs, ys, zs) 

ax2.set_title("Figure 2. Late configuration on $S^2$ with $\\varepsilon$-graph 

($\\varepsilon = 0.9$ rad)") 

ax2.set_xlabel("x") 

ax2.set_ylabel("y") 

ax2.set_zlabel("z") 

plt.tight_layout() 

plt.savefig("/mnt/data/figure2_late_scatter_graph.png", dpi=200) 

 

# Figure 3 

fig3 = plt.figure(figsize=(6, 4)) 

plt.plot(np.arange(T), ent_index) 

plt.axvline(200, linestyle='--') 

plt.xlabel("Time step") 

plt.ylabel("Entanglement index $E_\\sigma$") 

plt.title("Figure 3. Entanglement index across time; dashed line shows regime change") 

plt.tight_layout() 

plt.savefig("/mnt/data/figure3_entanglement_over_time.png", dpi=200) 
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# Figure 4 

eps_grid = np.linspace(0.3, 1.2, 20) 

beta0_early, beta1_early, beta0_late, beta1_late = [], [], [], [] 

for eps in eps_grid: 

    b0, b1 = betti_numbers(adjacency_from_dists(D_early, eps)) 

    c0, c1 = betti_numbers(adjacency_from_dists(D_late, eps)) 

    beta0_early.append(b0); beta1_early.append(b1) 

    beta0_late.append(c0);  beta1_late.append(c1) 

 

fig4 = plt.figure(figsize=(7, 5)) 

plt.plot(eps_grid, beta0_early, label=r"$\beta_0$ early") 

plt.plot(eps_grid, beta1_early, label=r"$\beta_1$ early") 

plt.plot(eps_grid, beta0_late, label=r"$\beta_0$ late") 

plt.plot(eps_grid, beta1_late, label=r"$\beta_1$ late") 

plt.xlabel(r"Threshold $\varepsilon$ (radians)") 

plt.ylabel(r"Betti numbers") 

plt.title("Figure 4. Betti curves for early vs late configurations (Vietoris–Rips 2-skeleton 

approximation)") 

plt.legend() 

plt.tight_layout() 

plt.savefig("/mnt/data/figure4_betti_curves.png", dpi=200) 
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