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Abstract

Forensic identification commonly rests on four pillars: estimation of biological
sex, age at death, stature (and broader osteological context), and the post-
mortem interval (PMI). Classical anthropological methods—such as Phenice’s
pelvic traits for sexing and Suchey-Brooks or sternal rib metamorphosis for
adult age estimation —remain indispensable, yet they produce interval
estimates and confidence statements that may be difficult to propagate
coherently when multiple lines of evidence are combined. We propose a
principled, end-to-end, multi-task probabilistic-machine learning (ML)
framework that fuses skeletal and dental measurements, radiographic/radiomic
descriptors, scene- and climate-level taphonomic variables, and entomological
evidence (developmental and successional data) to infer joint posterior
distributions over (i) biological sex, (ii) age group, and (iii) the PMI (and hence
time of death). The framework foregrounds calibrated probabilities and
explicitly models uncertainty (aleatoric and epistemic). We formalise

entomological likelihoods using accumulated degree hours (ADH) and species-
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specific development curves and update PMI posteriors with both
decomposition scoring and microbial “clock” evidence, yielding a transparent
Bayesian product of likelihoods. We illustrate the approach with simulated
data, reliability curves, partial-dependence plots, and casework-style
probability tables. We discuss accuracy, calibration, fairness, and the ethics of
modelling population affinity, emphasising standards and best practice for
entomological collection and reporting. The proposed framework is designed to
complement—not supplant —expert judgement and to present the court with
interpretable, quantitatively calibrated inferences. (Phenice, 1969; i@can, Loth, &
Wright, 1984; Buikstra & Ubelaker, 1994; Amendt et al., 2007; Megyesi,
Nawrocki, & Haskell, 2005; Metcalf et al., 2013; Ubelaker, 2019; Guo, Pleiss, Sun,

& Weinberger, 2017).

Keywords — forensic anthropology; probabilistic machine learning; calibration;
multi-task learning; age at death; biological sex estimation; post-mortem
interval; entomology; accumulated degree hours; reliability; uncertainty

quantification.

1. Introduction

The identification of unknown human remains entails the careful synthesis of
morphological, contextual, and increasingly molecular evidence. Within the
anthropological tradition, the pelvis and skull provide the most information for
estimating biological sex, with Phenice’s visual method on the pubic bone
furnishing high discriminability under favourable preservation (Phenice, 1969).
Age estimation in adults typically triangulates the pubic symphysis (e.g.,

Suchey-Brooks phase system), the auricular surface, and the sternal rib ends
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(Iscan metamorphosis), while subadult ages emphasise dental development and
epiphyseal fusion (Ubelaker, 2019). These classics remain the backbone of
professional practice, codified in Standards for Data Collection from Human

Skeletal Remains, which has done much to regularise observation, recording, and

reporting across laboratories (Buikstra & Ubelaker, 1994).

In parallel, forensic taphonomy and entomology have matured from expert arts
to increasingly quantitative sciences. For the early post-mortem window, body
cooling and biochemical change are informative; thereafter, decomposition
trajectories (total body score, TBS) linked to accumulated degree-days/hours
(ADD/ADH) and insect colonisation—development offer a principled scaffold
for PMI estimation. Amendt and colleagues’ best-practice guidelines
consolidating collection, rearing, and analytical procedures remain a
touchstone, as do subsequent methodological papers formalising statistical
inference for larval growth and successional data (Amendt et al., 2007; Tarone &

Foran, 2008; Wells & LaMotte, 2017).

Two complementary innovations have shifted the evidential landscape. First,
recent ML work has explored discriminative models for sex estimation from
cranial and long-bone metrics —support vector machines, random forests, and
more recently neural networks and ensembles—often matching or
outperforming linear discriminant approaches under cross-validation while
highlighting persistent issues of sampling and generalisability (Nikita, 2020;
Spradley & Jantz, 2016; FORDISC documentation). Second, post-mortem
microbiology offers an additional, partially independent clock: microbial
succession on and within remains shows broadly predictable dynamics across
environments, suggesting probabilistic “microbial clocks” that, when rigorously
validated, can be exploited in PMI estimation (Metcalf et al., 2013; DeBruyn et
al., 2017; Moitas et al., 2023).
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The forensic problem, however, is not merely one of point accuracy. In court, the
provenance and calibration of probabilities matter as much as point estimates.
Over-confident models are epistemically dangerous: modern deep networks
and complex ensembles are notorious for probability mis-calibration; their raw
scores cannot be taken at face value (Guo et al., 2017). Evidence synthesis must
therefore accommodate different data types (continuous metrics, ordinal
phases, counts of insects in instars, binary presence/absence of species,
environmental covariates), missingness patterns, and hierarchies (specimen-,
scene-, and species-level variability), all while producing calibrated posteriors

and transparent uncertainty decompositions (aleatoric vs epistemic) (Guo et al.,

2017; Kendall & Gal, 2017; Brier, 1950).

This article develops a multi-task probabilistic-ML framework to address these
desiderata. The multi-task aspect exploits the shared information between sex,
age, and PMI: pelvic morphology that strongly indicates female sex alters the
plausible age distribution; PMI estimates governed by microclimate and ADH
can inform (and be informed by) observable decomposition stages that also
affect which morphological traits are observable and with what quality. Multi-
task learning formalises such inductive transfer, improving data efficiency and
often out-of-sample performance (Caruana, 1997). While stature and population
affinity are part of many laboratory workflows, we deliberately focus the
modelling on sex, age, and PMI because these are most central to medico-legal
timelines and least ethically fraught. In particular, there is an ongoing debate
about the scientific and societal consequences of ancestry/population-affinity
estimation; recent editorials and standards caution against uncritical use of
morphoscopic traits and stress careful terminology and context. Our framework

therefore omits any ancestry classifier, while remaining compatible with
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appropriately governed, case-specific analyses when required (DiGangi &

Bethard, 2021; Dunn et al., 2020; ASB 132, 2022).

On the entomology side, the framework models both developmental evidence
(ageing maggots by length/instar under species-specific, temperature-
dependent growth curves) and successional evidence (community turnover of
necrophagous taxa). ADH is computed as the integral over time of degrees
above a species’ developmental threshold; this constrains larval age and hence a
minimum PMIL Successional data, where available, provide complementary
constraints later in decomposition. Best practice for collection, rearing, and
microclimate measurement is assumed, including scene temperature logging as
close to the body as feasible (Amendt et al., 2007; Campobasso, Di Vella, &
Introna, 2001; Megyesi et al., 2005; Wells & LaMotte, 2017).

The contribution of this paper is threefold. First, we articulate an explicit
probabilistic backbone for fusing osteological, taphonomic, entomological, and
microbial features within a multi-task architecture that outputs calibrated
probabilities for sex, age group, and PMI. Second, we derive a training and
validation protocol that uses post-hoc calibration (temperature scaling or
isotonic regression) and proper scoring rules (negative log-likelihood, Brier
score) to ensure probabilistic honesty. Third, we demonstrate with simulated
data how such a system yields casework-ready probability tables and
visualisations that help experts explain what the model believes, how strongly,
and why —without occluding the role of expert judgement or the necessity of
sensitivity analyses. The remainder of the paper details the methodology,
illustrative results, a critical discussion of limitations and ethics, and practical
attachments (code and figures) to facilitate reproduction and adaptation in

laboratory settings.
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Note on terminology. “Biological sex” is used for skeletal classification; “gender’

7

pertains to social identity and is not inferable from remains. Time of death

(ToD) is reported as recovered time minus posterior PMI.

2. Methodology
We denote a case by a collection of modality-specific observations
D= {xs' XdrXr) Xt) Xe, xm}

where x; are skeletal/dental metrics and ordinal phases; x; dental development
features; x, radiographic/radiomic features (CT/DR); x, taphonomic context
(TBS, scene descriptors, microclimate); x, entomological observations (species
set, counts/instars, larval lengths, rearing logs, temperature traces); and x,,
microbial features when available. Targets are y*®®) € { female, male },y(®9¢) €
{91, -, 9¢} (age groups), and a continuous PMI A > 0 (in hours), with time of
death ty = trecovery — A

() Encoders and fusion. Each modality enters through a dedicated encoder f: :

Zs = fs(xs),Zd = fd (xd): Zy = ﬁ'(xr)l Zy = ft(xt):ze = fe(xe),zm = fm(xm);

with missingness handled either by learned embeddings for special "missing'
tokens (categorical/ordinal) or by model-based imputation for continuous
features, Xmiss ~ qg(Xmiss | Xobs ) (a variational autoencoder for tabular data).

The fused representation is

z = ¢([z;lzallz, || z¢ || ze || 2 ])

where [- || -] denotes concatenation and ¢ is a gated transformation that learns

cross-modal interactions (Caruana, 1997).

(2) Task heads.

Sex and age heads are softmax classifiers:
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Pr(y©® =k | z) = softmax(W,z + by),,  k € {F,M}
Pr(y@9® = g | z) = softmax(W,z + by),, g € {1, ..., G}

PMI is modelled as a heteroscedastic log-normal (or mixture) regression:
A| z ~ log Normal(u(z),0%(2)),u, 0 > 0.

The head outputs u(z),log o(z) and admits mixture generalisations to capture
multi-modality.

(3) Entomological likelihoods and ADH. Let T (t) denote microclimate
temperature ( °C) near the remains; TO(S) is the species-specific developmental

threshold. Accumulated degree hours are

tcol
ADH® = j max(O,T(t) —TO(S))dt.

to

Given observed larval lengths L and instar counts for species s, we evaluate a
development-curve likelihood

£e@00) | || [ p(earapno@,0f)

SES i

where 96(5) parameterises growth (e.g., GAM-smoothed curves calibrated in the
laboratory). Successional observations provide a complementary factor p(
succession | A, 9).

(4) Decomposition and microbial clocks. From TBS we obtain p(TBS | A, 77).
Where available, microbial features yield p(x,, | A, ¥) (Metcalf et al., 2013).

(5) Joint posterior and training objective. The PMI posterior is proportional to

p(A1D) < p(Al2)Le(D;0.)p(TBS | A,m)p(xm | A Y)p(A)

with weakly informative priors on A. Learning proceeds by minimising a

proper composite loss

d= AsLCE(y(Sex),ﬁ(sex)) + AaLCE(y(age),ﬁ(age)) + AaLniL(B; u(z),0(2))
— A KL(gellp) (7)2

Montgomery, R. M. (2025). A Multi-Task Probabilistic—Machine Learning Framework for Forensic Anthropological
Identification: Integrating Osteology, Taphonomy, and Forensic Entomology. The Scottish Science Society, London Pub.



3 =
X
Z\
SCOTTISH
SCIENCE

1 The Scottish Science Society, London UK

where CE is cross-entropy, NLL is the log-normal negative log-likelihood, KL

regularises imputation, and ()., encourages calibration on a held-out set.

(6) Probability calibration and scoring. After training, classifier probabilities are

calibrated with either temperature scaling
exp (z/T)

» j exp (zj /T)

ﬁk = (T > 0),

or isotonic regression for non-parametric monotone mappings (Platt, 1999;
Zadrozny & Elkan, 2002; Guo et al., 2017). Reliability is assessed by the Brier
score

n

BS — %Z Z (1y; = K} — Pu)?

i=1
and visualised by reliability diagrams (Brier, 1950).

(7) Uncertainty decomposition. Predictive variance for PMI obeys

Var[A | D] = E[0%(2)] + Var[u(2)],

aleatoric epistemic

estimated via Monte-Carlo dropout or deep ensembles (Kendall & Gal, 2017).
(8) Quality control and standards. All entomological inputs assume adherence
to European Association for Forensic Entomology guidelines (Amendt et al.,

2007); osteological measurements follow Buikstra & Ubelaker (1994).

Variable glossary. x. : modality-specific features; z : fused latent; A : PMI (hours);
to : time of death; T(t), TO(S) : microclimate and species threshold; ADH:
accumulated degree hours; 6,7, : entomology, decomposition, and microbial
parameters; T : temperature-scaling parameter; A, : task weights.

3. Results (illustrative)

Montgomery, R. M. (2025). A Multi-Task Probabilistic—Machine Learning Framework for Forensic Anthropological
Identification: Integrating Osteology, Taphonomy, and Forensic Entomology. The Scottish Science Society, London Pub.



SCOTTISH
SCIENCE

1 The Scottish Science Society, London UK
Figures and a casework-style probability table are generated from the attached
Python code (Section 6). The data are simulated to demonstrate presentation

and interpretation; they do not reflect casework performance.

Figure 1. Reliability diagram for sex classification
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Figure 1. Reliability diagram for sex classification. The uncalibrated model
exhibits over-confidence at high probabilities; a simple temperature-scaling
transform brings the curve closer to the identity, improving probability honesty

(Guo et al., 2017).
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Figure 2. Posterior density for time since death (PM
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Figure 2. Posterior density for PMI (hours). A log-normal posterior (median =~

48 h ) illustrates how the model communicates uncertainty about time since

death.
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Figure 3. Partial dependence of PMI on ADH and ambient temperature.
Holding other factors constant, PMI estimates rise with ADH and are inversely

related to the offset T — T, echoing standard developmental logic in forensic

entomology (Amendt et al., 2007).

Figure 4. Confusion matrix for age-group classificatio

Subadult (12-17)

Young adult (18-34)

True class

Middle adult (35-59)

Older adult (60+)

Predicted class

Figure 4. Confusion matrix for age-group classification (simulated). Most errors
are adjacent-group confusions (e.g., Young vs Middle Adult), consistent with

overlapping skeletal changes in adulthood (Ubelaker, 2019).
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Table 1. Posterior probabilities for a hypothetical specimen (also exported as

CSV).
Attribute Category/Statistic Value
Biological sex | Female 78.0%
Biological sex | Male 21.0%
Biological sex | Indeterminate 1.0%
Age group Subadult (12-17) 3.0%

Age group Young adult (18-34) | 62.0%

Age group Middle adult (35-59) | 29.0%

Age group Older adult (60+) 6.0%

PMI (hours) | MAP 39.8

PMI (hours) | 95% credible interval | [22.7, 89.7]

4. Discussion

The central advantage of a probabilistic multi-task architecture is the coherent
sharing of information across interdependent inferences. In routine casework,
sex, age at death, and the post-mortem interval are not isolated judgements but
mutually constraining propositions. Pelvic morphology that strongly supports a
female classification subtly reshapes the plausible distribution of adult age
phases, just as the expression of age-related changes at the pubic symphysis or
sternal rib ends informs the credibility of sex classifications made from
incomplete pelves. By learning a common representation that is jointly
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optimised for all targets, the model encodes such couplings rather than treating
them as after-the-fact narrative stitching. This form of inductive transfer, long
recognised in the machine-learning literature, typically improves generalisation
when tasks are related and data are incomplete or noisy (Caruana, 1997).
Crucially, it also enables joint reporting- Pr( female, young adult | D)-so that

internal consistency is preserved and uncertainty is neither artificially inflated

by redundant independence assumptions nor suppressed by ad-hoc heuristics.

Calibration then becomes a first-class requirement rather than a cosmetic
refinement. Courts and investigative teams require probabilities whose
numerical values correspond to empirical frequencies; anything less invites
either over-statement or unwarranted equivocation. Modern discriminative
models, particularly deep networks and complex ensembles, are notorious for
mis-calibration: scores near one may not imply commensurate truth frequencies
(Guo, Pleiss, Sun, & Weinberger, 2017). The remedy is not to abandon such
models but to verify and, where necessary, correct their probability outputs
using post-hoc methods that preserve ranking while adjusting confidence, such
as temperature scaling for neural networks, Platt scaling for margin-based
classifiers, or isotonic regression when a flexible monotone map is warranted
(Platt, 1999; Zadrozny & Elkan, 2002). Reliability diagrams and proper scoring
rules-especially the Brier score-should accompany headline accuracies, so that
the trier of fact understands not only how often the system is right, but with
what honesty it expresses its uncertainty (Brier, 1950). In practice, the calibrated
model's reliability curve should hew closely to the identity line across the
support, and drift over time should be monitored with routine post-deployment

checks.

Entomology sits naturally within this probabilistic backbone and deserves

particular emphasis. Developmental evidence, grounded in species-specific
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temperature-dependent growth, yields a principled constraint on the minimum
PMLI. The relevant quantity is accumulated degree hours above a developmental
threshold; microclimate-not distant station readings-governs the integral, and
what appear to be minor temperature discrepancies can compound into
substantial ADH differences (Amendt et al., 2007). When species identification
is secure and rearing protocols are followed, growth models can be fitted with
modern smoothing techniques to deliver not only point predictions for larval
age but confidence bands that translate directly into likelihood functions for the
PMI (Tarone & Foran, 2008). Successional evidence extends this logic into later
decomposition stages by exploiting the regular turnover of necrophagous
assemblages, albeit with broader bounds. Decomposition scoring (e.g., total
body score) provides a partially independent check tied to thermal history;
when the composite likelihood of developmental, successional, and
decomposition evidence is multiplied with a scene-aware prior, the PMI
posterior becomes both transparent and defensible (Megyesi, Nawrocki, &
Haskell, 2005; Wells & LaMotte, 2017). The present framework embeds exactly
this product of likelihoods, allowing analysts to adjust weights where collection

conditions, species certainty, or temperature logging are suboptimal.

A complementary avenue lies in post-mortem microbiology. Microbial
succession on and within remains appears to follow broadly predictable
dynamics across environments, offering a quasi-clock signal that can, in
principle, augment or rescue PMI estimation when insect access has been
delayed or prevented (Metcalf et al., 2013; DeBruyn et al., 2017). The promise is
considerable, but the path to routine casework requires careful standardisation:
negative controls, contamination checks, platform calibration, and harmonised
bioinformatics workflows are indispensable, and jurisdiction-specific validation

should precede operational deployment (Moitas et al., 2023). Within a
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probabilistic synthesis, microbial features contribute an additional likelihood
term whose influence is automatically down-weighted when quality indicators

are poor, rather than being accepted or rejected wholesale.

No model, however, escapes the constraints of its data. A conspicuous
limitation in forensic anthropology is dataset shift. Many classical methods
were developed on historic, geographically restricted skeletal collections, and
contemporary ML efforts often train on convenience samples. Discrepancies
between training distributions and local casework populations can erode
performance and produce spurious certainty (Spradley & Jantz, 2016; Nikita,
2020). External validation, with honest reporting of out-of-sample accuracy and
calibration on truly independent cohorts, is therefore non-negotiable. Inter-
observer variability further complicates matters: even when observers are
skilled and follow Standards for Data Collection from Human Skeletal Remains,
small differences in phase assessment or landmark placement propagate
through to probability statements (Buikstra & Ubelaker, 1994). The present
framework treats such variability as aleatoric noise where possible and, when
sufficient multi-annotator data exist, can include coder-level random effects or

uncertainty-aware loss terms.

Entomological evidence has its own characteristic fragilities. Burial, enclosure,
restricted access, extreme weather, and the presence of toxins can delay
colonisation or alter development, challenging naive ADH calculations. Species
misidentification-especially at the larval stage-remains a perennial risk, and
station temperatures are poor surrogates for microclimate at the body. Best
practice, including in situ logging near or on the remains and rearing to adult
for secure identification, substantially reduces error bounds, but the model
must also communicate when evidential strands are weak or contradictory

(Amendt et al., 2007). A principled posterior naturally expands in such
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circumstances; the temptation to force narrow windows should be resisted in
favour of sensitivity analyses that show how priors and data quality affect the

inference.

Calibration drift and governance deserve explicit mention. A system calibrated
on last year's cases may become mis-calibrated as laboratories, environments,
and case mixtures change. Periodic recalibration on fresh validation sets should
be institutional policy, and figures documenting reliability over time ought to
be part of quality assurance. Where microbial data or novel sensors are
introduced, cross-modal checks can detect conflicts early: an implausibly tight
PMI from microbes in a context of delayed insect access may indicate
contamination; conversely, entomology that implies colonisation at
temperatures below a species' threshold should trigger a review of microclimate

recording.

Ethical considerations arise most sharply around ancestry or population-affinity
estimation. The present work omits such a classifier by design. Debates in the
discipline have underscored the risks of reifying social categories through
morphoscopic proxies and the potential for social harm when such estimates
are communicated without rigorous uncertainty and careful context (DiGangi &
Bethard, 2021; Dunn, Spiros, Kamnikar, & Hefner, 2020; ASB 132, 2022). A
narrow focus on sex, age, and PMI addresses the core medicolegal questions
while avoiding the most fraught terrain. Where population affinity is required
by investigative context, any analysis should follow contemporary standards,
foreground uncertainty, and be confined to questions that genuinely benefit the

identification effort.

From a practical perspective, adoption requires disciplined data capture, clear
reporting templates, and training. Osteological measurements should follow

established standards; entomological collection and rearing must adhere to
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international guidelines; and microclimate should be recorded at the scene with
calibrated loggers situated as close to the remains as practicable (Buikstra &
Ubelaker, 1994; Amendt et al., 2007). Validation must be stratified
geographically and temporally to expose drift, and all casework outputs should
include accuracy metrics, calibration figures, and uncertainty intervals rather
than point values alone. Narrative explanations should accompany probability
tables, making explicit the role of each evidential strand and the sensitivity of
conclusions to alternative scenarios such as delayed colonisation or partial
burning. Transparency-through the publication of protocols, calibration plots,

and versioned model cardssupports both scientific scrutiny and legal

admissibility.

Looking ahead, two research threads seem particularly fecund. The first is a
move from purely predictive to partially causal formulations, embedding
biological constraints directly into the model-for example, monotonicity
between ADH and larval age within empirically supported temperature bands.
Such constraints can improve extrapolation and guard against pathological fits
in sparse regimes. The second is federated learning across laboratories: many
jurisdictions are understandably reluctant to share raw case data, but model
parameters can be trained collaboratively with privacy-preserving protocols,
improving diversity and robustness without compromising confidentiality.
Closer integration with inexpensive sensor networks would also reduce
temperature-measurement error, and principled fusion of microbial clocks with
entomology may tighten PMI posteriors across the full decomposition

trajectory.

In summary, a multi-task probabilistic framework transforms a collection of
venerable methods and emerging signals into a single, calibrated inferential

object. Properly validated and governed, it can make forensic opinions more
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informative, more transparent, and ultimately more accountable to both science

and law.
5. Conclusion

We have presented a coherent, standards-conformant, multi-task probabilistic—
ML framework for forensic anthropological identification. By fusing
osteological, taphonomic, entomological, and microbial strands under a single,
calibrated inferential umbrella, the approach yields joint posterior statements
for biological sex, age group, and PMI, coupled with reliability diagnostics
intelligible to both experts and the court. With rigorous validation, careful
calibration, and ethical guardrails —especially around population affinity —this
framework can make forensic opinion both more informative and more

accountable.

6. Attachments (code and data products; filenames only)

# This script generates illustrative figures and a casework-style probability table
# for the forensic multi-task model described in the manuscript.

# It also saves the code itself for download.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from pathlib import Path

# Ensure output directory
out_dir = Path("/mnt/data")
out_dir.mkdir(parents=True, exist_ok=True)

# 1) Simulate sex classification calibration

np.random.seed(42)

n=2000

# Simulate uncalibrated predicted probabilities with mild over-confidence
p_true = np.random.beta(2.5, 2.5, size=n) # latent difficulty

y = (np.random.rand(n) < p_true).astype(int)

# Create an over-confident score by squashing around 0/1
logit = np.log(np.clip(p_true, 1le-6, 1-1e-6) / np.clip(1-p_true, le-6, 1-1e-6))
p_uncal = 1/(1+np.exp(-1.35*logit)) # scale logits to exaggerate confidence

# Temperature scaling (illustrative; not fit by NLL minimization here)
T=18
p_cal = 1/(1+np.exp(-(np.log(np.clip(p_uncal,1e-6,1-1e-6)/(1-np.clip(p_uncal, 1e-6,1-1e-6))))/T))

# Reliability diagram (10 bins)

bins = np.linspace(0.0, 1.0, 11)

bin_ids = np.digitize(p_uncal, bins) - 1
bin_ids_cal = np.digitize(p_cal, bins) - 1

def reliability_points(p, y, bin_ids, bins):
xs, ys =1 []
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for b in range(10):
idx = np.where(bin_ids == b)[0]
if idx.size > 0:
xs.append(np.mean(p[idx]))
ys.append(np.mean(y[idx]))
return np.array(xs), np.array(ys)

x_uncal, y_uncal = reliability_points(p_uncal, y, bin_ids, bins)
x_cal, y_cal = reliability_points(p_cal, y, bin_ids_cal, bins)

plt.figure(figsize=(6,5))

plt.plot([0,1],[0,1], linestyle="--", label="Perfectly calibrated")
plt.plot(x_uncal, y_uncal, marker="0", label="Uncalibrated")
plt.plot(x_cal, y_cal, marker="s", label="After temperature scaling")
plt.xlabel("Predicted probability")

plt.ylabel("Empirical accuracy")

plt.title("Figure 1. Reliability diagram for sex classification")
plt.legend()

figl_path = out_dir/"figurel_reliability.png"
plt.tight_layout()

plt.savefig(figl_path, dpi=200)

plt.show()

# 2) Simulate PMI posterior density (hours)

# Use a log-normal posterior for PMI (illustrative)

mu_log = np.log(48) - 0.5*(0.35**2) # set so median ~48h
sigma_log = 0.35

pmis = np.linspace(4, 192, 500)

from scipy.stats import lognorm

pdf =lognorm.pdf(pmis, s=sigma_log, scale=np.exp(mu_log))

plt.figure(figsize=(6,4.5))

plt.plot(pmis, pdf)

plt.xlabel("PMI (hours)")

plt.ylabel("Posterior density")

plt.title("Figure 2. Posterior density for time since death (PMI)")
fig2_path = out_dir/"figure2_pmi_posterior.png"
plt.tight_layout()

plt.savefig(fig2_path, dpi=200)

plt.show()

# 3) Partial dependence of PMI on ADH and average temperature

ADH = np.linspace(0, 2000, 200)
T_base =10.0 # base temperature threshold (°C)
temps = [14.0, 18.0, 22.0] # ambient means (°C)

plt.figure(figsize=(6,4.5))
for Ta in temps:
# Prevent division by zero; floor at a small positive delta
delta = max(Ta - T_base, 0.5)
pmi_est =ADH / delta # simplistic relationship for illustration
plt.plot(ADH, pmi_est, label=f"Mean ambient {Ta:.0f}°C")
plt.xlabel("Accumulated Degree Hours (ADH)")
plt.ylabel("Estimated PMI (hours)")
plt.title("Figure 3. Partial dependence of PMI on ADH and ambient temperature")
plt.legend()
fig3_path = out_dir/"figure3_pdp_ADH.png"
plt.tight_layout()
plt.savefig(fig3_path, dpi=200)
plt.show()

# 4) Age-group confusion matrix (simulated)

classes = ["Subadult (12-17)", "Young adult (18-34)", "Middle adult (35-59)", "Older adult (60+)"]
cm =np.array([[42, 7, 1, 0],
[6, 120, 18, 2],
[1,15,98,9],
[0, 3, 12, 55]])
totals = cm.sum(axis=1, keepdims=True)
acc_per_class = (np.diag(cm)/totals.flatten())

plt.figure(figsize=(6,5))

plt.imshow(cm, interpolation="nearest")

plt.title("Figure 4. Confusion matrix for age-group classification (simulated)")
plt.xlabel("Predicted class")

plt.ylabel("True class")

plt.xticks(range(4), classes, rotation=30, ha="right")

plt.yticks(range(4), classes)
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# Annotate counts
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):

plt.text(j, i, cm([i, j], ha="center", va="center")
figd_path = out_dir/"figure4_age_confusion.png"
plt.tight_layout()
plt.savefig(figd_path, dpi=200)
plt.show()

# 5) Casework-style probability table for a hypothetical specimen

# Posterior probabilities (illustrative)

sex_probs = {"Female": 0.78, "Male": 0.21, "Indeterminate": 0.01}

age_probs = {"Subadult (12-17)": 0.03, "Young adult (18-34)": 0.62, "Middle adult (35-59)": 0.29, "Older adult (60+)": 0.06}
# PMI summary from the lognormal posterior above

from scipy.stats import lognorm

dist = lognorm(s=sigma_log, scale=np.exp(mu_log))

pmi_map = pmis[np.argmax(pdf)]

pmi_ci = dist.ppf([0.025, 0.975])

rows =[]
for k, v in sex_probs.items|():
rows.append(["Biological sex", k, f'{100*v:.1f}"])
for k, v in age_probs.items():
rows.append(["Age group", k, f"{100*v:.1f}"])
rows.append(["PMI (hours)", "MAP", f"{pmi_map:.1f}"])
rows.append(["PMI (hours)", "95% credible interval", f'[{pmi_ci[0]:.1f}, {pmi_ci[1]:.1f}]"])

prob_df = pd.DataFrame(rows, columns=["Attribute", "Category/Statistic", "Value"])

# Display to user as a spreadsheet-like table
try:
from ace_tools import display_dataframe_to_user
display_dataframe_to_user("Casework probability table", prob_df)
except Exception as e:
# Fallback: print head
print(prob_df)

# Save outputs
prob_csv = out_dir/"probability_table.csv"
prob_df.to_csv(prob_csv, index=False)

# Save this code to a file for download

code_path = out_dir/"forensic_multitask_demo.py"

this_code = r""# Forensic multi-task illustrative figures and table

# (Same code as executed in the notebook environment)

# See notebook output for figures and the probability table.

# You can run this as a standalone script if you have numpy, pandas, matplotlib, and scipy installed.

with open(code_path, "w") as f:
f.write(this_code)

# Report saved file paths for the assistant to link
print("Saved files:")

print(figl_path)

print(fig2_path)

print(fig3_path)

print(figd_path)

print(prob_csv)

print(code_path)
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