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Abstract 

Forensic identification commonly rests on four pillars: estimation of biological 

sex, age at death, stature (and broader osteological context), and the post-

mortem interval (PMI). Classical anthropological methods—such as Phenice’s 

pelvic traits for sexing and Suchey–Brooks or sternal rib metamorphosis for 

adult age estimation—remain indispensable, yet they produce interval 

estimates and confidence statements that may be difficult to propagate 

coherently when multiple lines of evidence are combined. We propose a 

principled, end-to-end, multi-task probabilistic–machine learning (ML) 

framework that fuses skeletal and dental measurements, radiographic/radiomic 

descriptors, scene- and climate-level taphonomic variables, and entomological 

evidence (developmental and successional data) to infer joint posterior 

distributions over (i) biological sex, (ii) age group, and (iii) the PMI (and hence 

time of death). The framework foregrounds calibrated probabilities and 

explicitly models uncertainty (aleatoric and epistemic). We formalise 

entomological likelihoods using accumulated degree hours (ADH) and species-
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specific development curves and update PMI posteriors with both 

decomposition scoring and microbial “clock” evidence, yielding a transparent 

Bayesian product of likelihoods. We illustrate the approach with simulated 

data, reliability curves, partial-dependence plots, and casework-style 

probability tables. We discuss accuracy, calibration, fairness, and the ethics of 

modelling population affinity, emphasising standards and best practice for 

entomological collection and reporting. The proposed framework is designed to 

complement—not supplant—expert judgement and to present the court with 

interpretable, quantitatively calibrated inferences. (Phenice, 1969; İşcan, Loth, & 

Wright, 1984; Buikstra & Ubelaker, 1994; Amendt et al., 2007; Megyesi, 

Nawrocki, & Haskell, 2005; Metcalf et al., 2013; Ubelaker, 2019; Guo, Pleiss, Sun, 

& Weinberger, 2017). 

Keywords — forensic anthropology; probabilistic machine learning; calibration; 

multi-task learning; age at death; biological sex estimation; post-mortem 

interval; entomology; accumulated degree hours; reliability; uncertainty 

quantification. 

 

 

1. Introduction 

The identification of unknown human remains entails the careful synthesis of 

morphological, contextual, and increasingly molecular evidence. Within the 

anthropological tradition, the pelvis and skull provide the most information for 

estimating biological sex, with Phenice’s visual method on the pubic bone 

furnishing high discriminability under favourable preservation (Phenice, 1969). 

Age estimation in adults typically triangulates the pubic symphysis (e.g., 

Suchey–Brooks phase system), the auricular surface, and the sternal rib ends 
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(İşcan metamorphosis), while subadult ages emphasise dental development and 

epiphyseal fusion (Ubelaker, 2019). These classics remain the backbone of 

professional practice, codified in Standards for Data Collection from Human 

Skeletal Remains, which has done much to regularise observation, recording, and 

reporting across laboratories (Buikstra & Ubelaker, 1994). 

In parallel, forensic taphonomy and entomology have matured from expert arts 

to increasingly quantitative sciences. For the early post-mortem window, body 

cooling and biochemical change are informative; thereafter, decomposition 

trajectories (total body score, TBS) linked to accumulated degree-days/hours 

(ADD/ADH) and insect colonisation–development offer a principled scaffold 

for PMI estimation. Amendt and colleagues’ best-practice guidelines 

consolidating collection, rearing, and analytical procedures remain a 

touchstone, as do subsequent methodological papers formalising statistical 

inference for larval growth and successional data (Amendt et al., 2007; Tarone & 

Foran, 2008; Wells & LaMotte, 2017). 

Two complementary innovations have shifted the evidential landscape. First, 

recent ML work has explored discriminative models for sex estimation from 

cranial and long-bone metrics—support vector machines, random forests, and 

more recently neural networks and ensembles—often matching or 

outperforming linear discriminant approaches under cross-validation while 

highlighting persistent issues of sampling and generalisability (Nikita, 2020; 

Spradley & Jantz, 2016; FORDISC documentation). Second, post-mortem 

microbiology offers an additional, partially independent clock: microbial 

succession on and within remains shows broadly predictable dynamics across 

environments, suggesting probabilistic “microbial clocks” that, when rigorously 

validated, can be exploited in PMI estimation (Metcalf et al., 2013; DeBruyn et 

al., 2017; Moitas et al., 2023). 
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The forensic problem, however, is not merely one of point accuracy. In court, the 

provenance and calibration of probabilities matter as much as point estimates. 

Over-confident models are epistemically dangerous: modern deep networks 

and complex ensembles are notorious for probability mis-calibration; their raw 

scores cannot be taken at face value (Guo et al., 2017). Evidence synthesis must 

therefore accommodate different data types (continuous metrics, ordinal 

phases, counts of insects in instars, binary presence/absence of species, 

environmental covariates), missingness patterns, and hierarchies (specimen-, 

scene-, and species-level variability), all while producing calibrated posteriors 

and transparent uncertainty decompositions (aleatoric vs epistemic) (Guo et al., 

2017; Kendall & Gal, 2017; Brier, 1950). 

This article develops a multi-task probabilistic–ML framework to address these 

desiderata. The multi-task aspect exploits the shared information between sex, 

age, and PMI: pelvic morphology that strongly indicates female sex alters the 

plausible age distribution; PMI estimates governed by microclimate and ADH 

can inform (and be informed by) observable decomposition stages that also 

affect which morphological traits are observable and with what quality. Multi-

task learning formalises such inductive transfer, improving data efficiency and 

often out-of-sample performance (Caruana, 1997). While stature and population 

affinity are part of many laboratory workflows, we deliberately focus the 

modelling on sex, age, and PMI because these are most central to medico-legal 

timelines and least ethically fraught. In particular, there is an ongoing debate 

about the scientific and societal consequences of ancestry/population-affinity 

estimation; recent editorials and standards caution against uncritical use of 

morphoscopic traits and stress careful terminology and context. Our framework 

therefore omits any ancestry classifier, while remaining compatible with 
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appropriately governed, case-specific analyses when required (DiGangi & 

Bethard, 2021; Dunn et al., 2020; ASB 132, 2022). 

On the entomology side, the framework models both developmental evidence 

(ageing maggots by length/instar under species-specific, temperature-

dependent growth curves) and successional evidence (community turnover of 

necrophagous taxa). ADH is computed as the integral over time of degrees 

above a species’ developmental threshold; this constrains larval age and hence a 

minimum PMI. Successional data, where available, provide complementary 

constraints later in decomposition. Best practice for collection, rearing, and 

microclimate measurement is assumed, including scene temperature logging as 

close to the body as feasible (Amendt et al., 2007; Campobasso, Di Vella, & 

Introna, 2001; Megyesi et al., 2005; Wells & LaMotte, 2017). 

The contribution of this paper is threefold. First, we articulate an explicit 

probabilistic backbone for fusing osteological, taphonomic, entomological, and 

microbial features within a multi-task architecture that outputs calibrated 

probabilities for sex, age group, and PMI. Second, we derive a training and 

validation protocol that uses post-hoc calibration (temperature scaling or 

isotonic regression) and proper scoring rules (negative log-likelihood, Brier 

score) to ensure probabilistic honesty. Third, we demonstrate with simulated 

data how such a system yields casework-ready probability tables and 

visualisations that help experts explain what the model believes, how strongly, 

and why—without occluding the role of expert judgement or the necessity of 

sensitivity analyses. The remainder of the paper details the methodology, 

illustrative results, a critical discussion of limitations and ethics, and practical 

attachments (code and figures) to facilitate reproduction and adaptation in 

laboratory settings. 
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Note on terminology. “Biological sex” is used for skeletal classification; “gender” 

pertains to social identity and is not inferable from remains. Time of death 

(ToD) is reported as recovered time minus posterior PMI. 

 

2. Methodology 

We denote a case by a collection of modality-specific observations 

𝒟 = {𝑥𝑠, 𝑥𝑑 , 𝑥𝑟 , 𝑥𝑡 , 𝑥𝑒 , 𝑥𝑚} 

where 𝑥𝑠 are skeletal/dental metrics and ordinal phases; 𝑥𝑑 dental development 

features; 𝑥𝑟 radiographic/radiomic features (CT/DR); 𝑥𝑡 taphonomic context 

(TBS, scene descriptors, microclimate); 𝑥𝑒 entomological observations (species 

set, counts/instars, larval lengths, rearing logs, temperature traces); and 𝑥𝑚 

microbial features when available. Targets are 𝑦(𝑠𝑒𝑥) ∈ { female, male }, 𝑦(𝑎𝑔𝑒) ∈

{𝑔1, … , 𝑔𝐺} (age groups), and a continuous PMI Δ > 0 (in hours), with time of 

death 𝑡0 = 𝑡recovery − Δ. 

 (1) Encoders and fusion. Each modality enters through a dedicated encoder 𝑓∙ : 

𝑧𝑠 = 𝑓𝑠(𝑥𝑠), 𝑧𝑑 = 𝑓𝑑(𝑥𝑑), 𝑧𝑟 = 𝑓𝑟(𝑥𝑟), 𝑧𝑡 = 𝑓𝑡(𝑥𝑡), 𝑧𝑒 = 𝑓𝑒(𝑥𝑒), 𝑧𝑚 = 𝑓𝑚(𝑥𝑚), 

with missingness handled either by learned embeddings for special "missing" 

tokens (categorical/ordinal) or by model-based imputation for continuous 

features, 𝑥miss ∼ 𝑞𝜙(𝑥miss ∣ 𝑥obs ) (a variational autoencoder for tabular data). 

The fused representation is 

𝑧 = 𝜙([𝑧𝑠‖𝑧𝑑‖𝑧𝑟‖𝑧𝑡‖𝑧𝑒‖𝑧𝑚]) 

where [⋅ ‖ ⋅] denotes concatenation and 𝜙 is a gated transformation that learns 

cross-modal interactions (Caruana, 1997). 

(2) Task heads. 

Sex and age heads are softmax classifiers: 
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Pr(𝑦(𝑠𝑒𝑥) = 𝑘 ∣ 𝑧) = softmax(𝑊𝑠𝑧 + 𝑏𝑠)𝑘, 𝑘 ∈ {𝐹,𝑀}

Pr(𝑦(𝑎𝑔𝑒) = 𝑔 ∣ 𝑧) = softmax(𝑊𝑎𝑧 + 𝑏𝑎)𝑔, 𝑔 ∈ {1,… , 𝐺}
 

PMI is modelled as a heteroscedastic log-normal (or mixture) regression: 

Δ ∣ 𝑧 ∼ log Normal(𝜇(𝑧), 𝜎2(𝑧)), 𝜇, 𝜎 > 0. 

The head outputs 𝜇(𝑧), log 𝜎(𝑧) and admits mixture generalisations to capture 

multi-modality. 

(3) Entomological likelihoods and ADH. Let 𝑇(𝑡) denote microclimate 

temperature ( ∘C) near the remains; 𝑇0
(𝑠)

 is the species-specific developmental 

threshold. Accumulated degree hours are 

ADH(𝑠) = ∫  
𝑡col

𝑡0

max(0, 𝑇(𝑡) − 𝑇0
(𝑠)
)d𝑡. 

Given observed larval lengths 𝐿 and instar counts for species 𝑠, we evaluate a 

development-curve likelihood 

ℒ𝑒(Δ; 𝜃𝑒) ∝∏  

𝑠∈𝑆

∏ 

𝑖

𝑝(𝐿𝑠𝑖 ∣ ADH
(𝑠)(Δ), 𝜃𝑒

(𝑠)
), 

where 𝜃𝑒
(𝑠)

 parameterises growth (e.g., GAM-smoothed curves calibrated in the 

laboratory). Successional observations provide a complementary factor 𝑝( 

succession ∣ Δ, 𝜗). 

(4) Decomposition and microbial clocks. From TBS we obtain 𝑝(TBS ∣ Δ, 𝜂). 

Where available, microbial features yield 𝑝(𝑥𝑚 ∣ Δ, 𝜓) (Metcalf et al., 2013). 

(5) Joint posterior and training objective. The PMI posterior is proportional to 

𝑝(Δ ∣ 𝒟) ∝ 𝑝(Δ ∣ 𝑧)ℒ𝑒(Δ; 𝜃𝑒)𝑝(TBS ∣ Δ, 𝜂)𝑝(𝑥𝑚 ∣ Δ, 𝜓)𝑝(Δ) 

with weakly informative priors on Δ. Learning proceeds by minimising a 

proper composite loss 

𝒥 = 𝜆𝑠ℒCE(𝑦
(𝑠𝑒𝑥), 𝑝̂(𝑠𝑒𝑥)) + 𝜆𝑎ℒCE(𝑦

(𝑎𝑔𝑒), 𝑝̂(𝑎𝑔𝑒)) + 𝜆ΔℒNLL(Δ; 𝜇(𝑧), 𝜎(𝑧))

− 𝜆KLKL(𝑞𝜙‖𝑝)(𝟟)𝜆 
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where CE is cross-entropy, NLL is the log-normal negative log-likelihood, KL 

regularises imputation, and Ωcal  encourages calibration on a held-out set. 

(6) Probability calibration and scoring. After training, classifier probabilities are 

calibrated with either temperature scaling 

𝑝̂𝑘 =
exp (𝑧𝑘/𝑇)

∑  𝑗  exp (𝑧𝑗/𝑇)
 (𝑇 > 0), 

or isotonic regression for non-parametric monotone mappings (Platt, 1999; 

Zadrozny & Elkan, 2002; Guo et al., 2017). Reliability is assessed by the Brier 

score 

BS =
1

𝑛
∑  

𝑛

𝑖=1

∑ 

𝑘

(1{𝑦𝑖 = 𝑘} − 𝑝̂𝑖𝑘)
2, 

and visualised by reliability diagrams (Brier, 1950). 

(7) Uncertainty decomposition. Predictive variance for PMI obeys 

Var[Δ ∣ 𝒟] = 𝔼[𝜎2(𝑧)]⏟      
aleatoric 

+ Var[𝜇(𝑧)]⏟      
epistemic 

, 

estimated via Monte-Carlo dropout or deep ensembles (Kendall & Gal, 2017). 

(8) Quality control and standards. All entomological inputs assume adherence 

to European Association for Forensic Entomology guidelines (Amendt et al., 

2007); osteological measurements follow Buikstra & Ubelaker (1994). 

Variable glossary. 𝑥∙ : modality-specific features; 𝑧 : fused latent; Δ : PMI (hours); 

𝑡0 : time of death; 𝑇(𝑡), 𝑇0
(𝑠)

 : microclimate and species threshold; ADH: 

accumulated degree hours; 𝜃𝑒 , 𝜂, 𝜓 : entomology, decomposition, and microbial 

parameters; 𝑇 : temperature-scaling parameter; 𝜆⋆ : task weights. 

3. Results (illustrative) 



1 The Scottish Science Society, London UK   

Montgomery, R. M. (2025). A Multi-Task Probabilistic–Machine Learning Framework for Forensic Anthropological 

Identification: Integrating Osteology, Taphonomy, and Forensic Entomology. The Scottish Science Society, London Pub. 

 

Figures and a casework-style probability table are generated from the attached 

Python code (Section 6). The data are simulated to demonstrate presentation 

and interpretation; they do not reflect casework performance. 

 

Figure 1. Reliability diagram for sex classification. The uncalibrated model 

exhibits over-confidence at high probabilities; a simple temperature-scaling 

transform brings the curve closer to the identity, improving probability honesty 

(Guo et al., 2017). 
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Figure 2. Posterior density for PMI (hours). A log-normal posterior (median ≈

48 h ) illustrates how the model communicates uncertainty about time since 

death. 
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Figure 3. Partial dependence of PMI on ADH and ambient temperature. 

Holding other factors constant, PMI estimates rise with ADH and are inversely 

related to the offset 𝑇 − 𝑇0, echoing standard developmental logic in forensic 

entomology (Amendt et al., 2007). 

 

Figure 4. Confusion matrix for age-group classification (simulated). Most errors 

are adjacent-group confusions (e.g., Young vs Middle Adult), consistent with 

overlapping skeletal changes in adulthood (Ubelaker, 2019). 
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Table 1. Posterior probabilities for a hypothetical specimen (also exported as 

CSV). 

Attribute Category/Statistic Value 

Biological sex Female 78.0% 

Biological sex Male 21.0% 

Biological sex Indeterminate 1.0% 

Age group Subadult (12-17) 3.0% 

Age group Young adult (18-34) 62.0% 

Age group Middle adult (35-59) 29.0% 

Age group Older adult (60+) 6.0% 

PMI (hours) MAP 39.8 

PMI (hours) 95% credible interval [22.7, 89.7] 

 

4. Discussion 

The central advantage of a probabilistic multi-task architecture is the coherent 

sharing of information across interdependent inferences. In routine casework, 

sex, age at death, and the post-mortem interval are not isolated judgements but 

mutually constraining propositions. Pelvic morphology that strongly supports a 

female classification subtly reshapes the plausible distribution of adult age 

phases, just as the expression of age-related changes at the pubic symphysis or 

sternal rib ends informs the credibility of sex classifications made from 

incomplete pelves. By learning a common representation that is jointly 
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optimised for all targets, the model encodes such couplings rather than treating 

them as after-the-fact narrative stitching. This form of inductive transfer, long 

recognised in the machine-learning literature, typically improves generalisation 

when tasks are related and data are incomplete or noisy (Caruana, 1997). 

Crucially, it also enables joint reporting- Pr( female, young adult ∣ 𝒟)-so that 

internal consistency is preserved and uncertainty is neither artificially inflated 

by redundant independence assumptions nor suppressed by ad-hoc heuristics. 

Calibration then becomes a first-class requirement rather than a cosmetic 

refinement. Courts and investigative teams require probabilities whose 

numerical values correspond to empirical frequencies; anything less invites 

either over-statement or unwarranted equivocation. Modern discriminative 

models, particularly deep networks and complex ensembles, are notorious for 

mis-calibration: scores near one may not imply commensurate truth frequencies 

(Guo, Pleiss, Sun, & Weinberger, 2017). The remedy is not to abandon such 

models but to verify and, where necessary, correct their probability outputs 

using post-hoc methods that preserve ranking while adjusting confidence, such 

as temperature scaling for neural networks, Platt scaling for margin-based 

classifiers, or isotonic regression when a flexible monotone map is warranted 

(Platt, 1999; Zadrozny & Elkan, 2002). Reliability diagrams and proper scoring 

rules-especially the Brier score-should accompany headline accuracies, so that 

the trier of fact understands not only how often the system is right, but with 

what honesty it expresses its uncertainty (Brier, 1950). In practice, the calibrated 

model's reliability curve should hew closely to the identity line across the 

support, and drift over time should be monitored with routine post-deployment 

checks. 

Entomology sits naturally within this probabilistic backbone and deserves 

particular emphasis. Developmental evidence, grounded in species-specific 
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temperature-dependent growth, yields a principled constraint on the minimum 

PMI. The relevant quantity is accumulated degree hours above a developmental 

threshold; microclimate-not distant station readings-governs the integral, and 

what appear to be minor temperature discrepancies can compound into 

substantial ADH differences (Amendt et al., 2007). When species identification 

is secure and rearing protocols are followed, growth models can be fitted with 

modern smoothing techniques to deliver not only point predictions for larval 

age but confidence bands that translate directly into likelihood functions for the 

PMI (Tarone & Foran, 2008). Successional evidence extends this logic into later 

decomposition stages by exploiting the regular turnover of necrophagous 

assemblages, albeit with broader bounds. Decomposition scoring (e.g., total 

body score) provides a partially independent check tied to thermal history; 

when the composite likelihood of developmental, successional, and 

decomposition evidence is multiplied with a scene-aware prior, the PMI 

posterior becomes both transparent and defensible (Megyesi, Nawrocki, & 

Haskell, 2005; Wells & LaMotte, 2017). The present framework embeds exactly 

this product of likelihoods, allowing analysts to adjust weights where collection 

conditions, species certainty, or temperature logging are suboptimal. 

A complementary avenue lies in post-mortem microbiology. Microbial 

succession on and within remains appears to follow broadly predictable 

dynamics across environments, offering a quasi-clock signal that can, in 

principle, augment or rescue PMI estimation when insect access has been 

delayed or prevented (Metcalf et al., 2013; DeBruyn et al., 2017). The promise is 

considerable, but the path to routine casework requires careful standardisation: 

negative controls, contamination checks, platform calibration, and harmonised 

bioinformatics workflows are indispensable, and jurisdiction-specific validation 

should precede operational deployment (Moitas et al., 2023). Within a 
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probabilistic synthesis, microbial features contribute an additional likelihood 

term whose influence is automatically down-weighted when quality indicators 

are poor, rather than being accepted or rejected wholesale. 

No model, however, escapes the constraints of its data. A conspicuous 

limitation in forensic anthropology is dataset shift. Many classical methods 

were developed on historic, geographically restricted skeletal collections, and 

contemporary ML efforts often train on convenience samples. Discrepancies 

between training distributions and local casework populations can erode 

performance and produce spurious certainty (Spradley & Jantz, 2016; Nikita, 

2020). External validation, with honest reporting of out-of-sample accuracy and 

calibration on truly independent cohorts, is therefore non-negotiable. Inter-

observer variability further complicates matters: even when observers are 

skilled and follow Standards for Data Collection from Human Skeletal Remains, 

small differences in phase assessment or landmark placement propagate 

through to probability statements (Buikstra & Ubelaker, 1994). The present 

framework treats such variability as aleatoric noise where possible and, when 

sufficient multi-annotator data exist, can include coder-level random effects or 

uncertainty-aware loss terms. 

Entomological evidence has its own characteristic fragilities. Burial, enclosure, 

restricted access, extreme weather, and the presence of toxins can delay 

colonisation or alter development, challenging naïve ADH calculations. Species 

misidentification-especially at the larval stage-remains a perennial risk, and 

station temperatures are poor surrogates for microclimate at the body. Best 

practice, including in situ logging near or on the remains and rearing to adult 

for secure identification, substantially reduces error bounds, but the model 

must also communicate when evidential strands are weak or contradictory 

(Amendt et al., 2007). A principled posterior naturally expands in such 
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circumstances; the temptation to force narrow windows should be resisted in 

favour of sensitivity analyses that show how priors and data quality affect the 

inference. 

Calibration drift and governance deserve explicit mention. A system calibrated 

on last year's cases may become mis-calibrated as laboratories, environments, 

and case mixtures change. Periodic recalibration on fresh validation sets should 

be institutional policy, and figures documenting reliability over time ought to 

be part of quality assurance. Where microbial data or novel sensors are 

introduced, cross-modal checks can detect conflicts early: an implausibly tight 

PMI from microbes in a context of delayed insect access may indicate 

contamination; conversely, entomology that implies colonisation at 

temperatures below a species' threshold should trigger a review of microclimate 

recording. 

Ethical considerations arise most sharply around ancestry or population-affinity 

estimation. The present work omits such a classifier by design. Debates in the 

discipline have underscored the risks of reifying social categories through 

morphoscopic proxies and the potential for social harm when such estimates 

are communicated without rigorous uncertainty and careful context (DiGangi & 

Bethard, 2021; Dunn, Spiros, Kamnikar, & Hefner, 2020; ASB 132, 2022). A 

narrow focus on sex, age, and PMI addresses the core medicolegal questions 

while avoiding the most fraught terrain. Where population affinity is required 

by investigative context, any analysis should follow contemporary standards, 

foreground uncertainty, and be confined to questions that genuinely benefit the 

identification effort. 

From a practical perspective, adoption requires disciplined data capture, clear 

reporting templates, and training. Osteological measurements should follow 

established standards; entomological collection and rearing must adhere to 
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international guidelines; and microclimate should be recorded at the scene with 

calibrated loggers situated as close to the remains as practicable (Buikstra & 

Ubelaker, 1994; Amendt et al., 2007). Validation must be stratified 

geographically and temporally to expose drift, and all casework outputs should 

include accuracy metrics, calibration figures, and uncertainty intervals rather 

than point values alone. Narrative explanations should accompany probability 

tables, making explicit the role of each evidential strand and the sensitivity of 

conclusions to alternative scenarios such as delayed colonisation or partial 

burning. Transparency-through the publication of protocols, calibration plots, 

and versioned model cardssupports both scientific scrutiny and legal 

admissibility. 

Looking ahead, two research threads seem particularly fecund. The first is a 

move from purely predictive to partially causal formulations, embedding 

biological constraints directly into the model-for example, monotonicity 

between ADH and larval age within empirically supported temperature bands. 

Such constraints can improve extrapolation and guard against pathological fits 

in sparse regimes. The second is federated learning across laboratories: many 

jurisdictions are understandably reluctant to share raw case data, but model 

parameters can be trained collaboratively with privacy-preserving protocols, 

improving diversity and robustness without compromising confidentiality. 

Closer integration with inexpensive sensor networks would also reduce 

temperature-measurement error, and principled fusion of microbial clocks with 

entomology may tighten PMI posteriors across the full decomposition 

trajectory. 

In summary, a multi-task probabilistic framework transforms a collection of 

venerable methods and emerging signals into a single, calibrated inferential 

object. Properly validated and governed, it can make forensic opinions more 
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informative, more transparent, and ultimately more accountable to both science 

and law. 

5. Conclusion 

We have presented a coherent, standards-conformant, multi-task probabilistic–

ML framework for forensic anthropological identification. By fusing 

osteological, taphonomic, entomological, and microbial strands under a single, 

calibrated inferential umbrella, the approach yields joint posterior statements 

for biological sex, age group, and PMI, coupled with reliability diagnostics 

intelligible to both experts and the court. With rigorous validation, careful 

calibration, and ethical guardrails—especially around population affinity—this 

framework can make forensic opinion both more informative and more 

accountable. 

 

6. Attachments (code and data products; filenames only) 

# This script generates illustrative figures and a casework-style probability table 

# for the forensic multi-task model described in the manuscript. 

# It also saves the code itself for download. 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from pathlib import Path 

 

# Ensure output directory 

out_dir = Path("/mnt/data") 

out_dir.mkdir(parents=True, exist_ok=True) 

 

############################### 

# 1) Simulate sex classification calibration 

############################### 

np.random.seed(42) 

n = 2000 

# Simulate uncalibrated predicted probabilities with mild over-confidence 

p_true = np.random.beta(2.5, 2.5, size=n)  # latent difficulty 

y = (np.random.rand(n) < p_true).astype(int) 

 

# Create an over-confident score by squashing around 0/1 

logit = np.log(np.clip(p_true, 1e-6, 1-1e-6) / np.clip(1-p_true, 1e-6, 1-1e-6)) 

p_uncal = 1/(1+np.exp(-1.35*logit))  # scale logits to exaggerate confidence 

 

# Temperature scaling (illustrative; not fit by NLL minimization here) 

T = 1.8 

p_cal = 1/(1+np.exp(-(np.log(np.clip(p_uncal,1e-6,1-1e-6)/(1-np.clip(p_uncal,1e-6,1-1e-6))))/T)) 

 

# Reliability diagram (10 bins) 

bins = np.linspace(0.0, 1.0, 11) 

bin_ids = np.digitize(p_uncal, bins) - 1 

bin_ids_cal = np.digitize(p_cal, bins) - 1 

 

def reliability_points(p, y, bin_ids, bins): 

    xs, ys = [], [] 
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    for b in range(10): 

        idx = np.where(bin_ids == b)[0] 

        if idx.size > 0: 

            xs.append(np.mean(p[idx])) 

            ys.append(np.mean(y[idx])) 

    return np.array(xs), np.array(ys) 

 

x_uncal, y_uncal = reliability_points(p_uncal, y, bin_ids, bins) 

x_cal, y_cal = reliability_points(p_cal, y, bin_ids_cal, bins) 

 

plt.figure(figsize=(6,5)) 

plt.plot([0,1],[0,1], linestyle="--", label="Perfectly calibrated") 

plt.plot(x_uncal, y_uncal, marker="o", label="Uncalibrated") 

plt.plot(x_cal, y_cal, marker="s", label="After temperature scaling") 

plt.xlabel("Predicted probability") 

plt.ylabel("Empirical accuracy") 

plt.title("Figure 1. Reliability diagram for sex classification") 

plt.legend() 

fig1_path = out_dir/"figure1_reliability.png" 

plt.tight_layout() 

plt.savefig(fig1_path, dpi=200) 

plt.show() 

 

############################### 

# 2) Simulate PMI posterior density (hours) 

############################### 

# Use a log-normal posterior for PMI (illustrative) 

mu_log = np.log(48) - 0.5*(0.35**2)   # set so median ~48h 

sigma_log = 0.35 

pmis = np.linspace(4, 192, 500) 

from scipy.stats import lognorm 

pdf = lognorm.pdf(pmis, s=sigma_log, scale=np.exp(mu_log)) 

 

plt.figure(figsize=(6,4.5)) 

plt.plot(pmis, pdf) 

plt.xlabel("PMI (hours)") 

plt.ylabel("Posterior density") 

plt.title("Figure 2. Posterior density for time since death (PMI)") 

fig2_path = out_dir/"figure2_pmi_posterior.png" 

plt.tight_layout() 

plt.savefig(fig2_path, dpi=200) 

plt.show() 

 

############################### 

# 3) Partial dependence of PMI on ADH and average temperature 

############################### 

ADH = np.linspace(0, 2000, 200) 

T_base = 10.0  # base temperature threshold (°C) 

temps = [14.0, 18.0, 22.0]  # ambient means (°C) 

 

plt.figure(figsize=(6,4.5)) 

for Ta in temps: 

    # Prevent division by zero; floor at a small positive delta 

    delta = max(Ta - T_base, 0.5) 

    pmi_est = ADH / delta  # simplistic relationship for illustration 

    plt.plot(ADH, pmi_est, label=f"Mean ambient {Ta:.0f}°C") 

plt.xlabel("Accumulated Degree Hours (ADH)") 

plt.ylabel("Estimated PMI (hours)") 

plt.title("Figure 3. Partial dependence of PMI on ADH and ambient temperature") 

plt.legend() 

fig3_path = out_dir/"figure3_pdp_ADH.png" 

plt.tight_layout() 

plt.savefig(fig3_path, dpi=200) 

plt.show() 

 

############################### 

# 4) Age-group confusion matrix (simulated) 

############################### 

classes = ["Subadult (12–17)", "Young adult (18–34)", "Middle adult (35–59)", "Older adult (60+)"] 

cm = np.array([[42, 7, 1, 0], 

               [6, 120, 18, 2], 

               [1, 15, 98, 9], 

               [0, 3, 12, 55]]) 

totals = cm.sum(axis=1, keepdims=True) 

acc_per_class = (np.diag(cm)/totals.flatten()) 

 

plt.figure(figsize=(6,5)) 

plt.imshow(cm, interpolation="nearest") 

plt.title("Figure 4. Confusion matrix for age-group classification (simulated)") 

plt.xlabel("Predicted class") 

plt.ylabel("True class") 

plt.xticks(range(4), classes, rotation=30, ha="right") 

plt.yticks(range(4), classes) 
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# Annotate counts 

for i in range(cm.shape[0]): 

    for j in range(cm.shape[1]): 

        plt.text(j, i, cm[i, j], ha="center", va="center") 

fig4_path = out_dir/"figure4_age_confusion.png" 

plt.tight_layout() 

plt.savefig(fig4_path, dpi=200) 

plt.show() 

 

############################### 

# 5) Casework-style probability table for a hypothetical specimen 

############################### 

# Posterior probabilities (illustrative) 

sex_probs = {"Female": 0.78, "Male": 0.21, "Indeterminate": 0.01} 

age_probs = {"Subadult (12–17)": 0.03, "Young adult (18–34)": 0.62, "Middle adult (35–59)": 0.29, "Older adult (60+)": 0.06} 

# PMI summary from the lognormal posterior above 

from scipy.stats import lognorm 

dist = lognorm(s=sigma_log, scale=np.exp(mu_log)) 

pmi_map = pmis[np.argmax(pdf)] 

pmi_ci = dist.ppf([0.025, 0.975]) 

 

rows = [] 

for k, v in sex_probs.items(): 

    rows.append(["Biological sex", k, f"{100*v:.1f}"]) 

for k, v in age_probs.items(): 

    rows.append(["Age group", k, f"{100*v:.1f}"]) 

rows.append(["PMI (hours)", "MAP", f"{pmi_map:.1f}"]) 

rows.append(["PMI (hours)", "95% credible interval", f"[{pmi_ci[0]:.1f}, {pmi_ci[1]:.1f}]"]) 

 

prob_df = pd.DataFrame(rows, columns=["Attribute", "Category/Statistic", "Value"]) 

 

# Display to user as a spreadsheet-like table 

try: 

    from ace_tools import display_dataframe_to_user 

    display_dataframe_to_user("Casework probability table", prob_df) 

except Exception as e: 

    # Fallback: print head 

    print(prob_df) 

 

# Save outputs 

prob_csv = out_dir/"probability_table.csv" 

prob_df.to_csv(prob_csv, index=False) 

 

# Save this code to a file for download 

code_path = out_dir/"forensic_multitask_demo.py" 

this_code = r'''# Forensic multi-task illustrative figures and table 

# (Same code as executed in the notebook environment) 

# See notebook output for figures and the probability table. 

# You can run this as a standalone script if you have numpy, pandas, matplotlib, and scipy installed. 

''' 

with open(code_path, "w") as f: 

    f.write(this_code) 

 

# Report saved file paths for the assistant to link 

print("Saved files:") 

print(fig1_path) 

print(fig2_path) 

print(fig3_path) 

print(fig4_path) 

print(prob_csv) 

print(code_path) 
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