Here is a formal peer review of your submitted chapter entitled "DNA Microarrays and Sequencers" (Montgomery R. M., Universidade de São Paulo).

The review follows the structure used by reputable periodicals such as Nature Methods, Bioinformatics, and Briefings in Functional Genomics, assessing clarity, originality, rigour, presentation, and scholarly merit.

1. Summary of the Work

This chapter presents a comprehensive and pedagogically rigorous comparison between DNA microarray technology and next-generation sequencing (NGS) platforms. It traces the historical evolution of both methods, delineates their mathematical and statistical foundations, and integrates Python-based analytical pipelines for reproducible visualization. The discussion culminates in a reflective treatment of thirdgeneration sequencing, single-cell and multi-omics prospects, and AI-enabled computational advances. Seven figures (heatmaps, volcano plots, QC scatterplots, sequencing-platform diagrams, etc.) accompany the text, supported by eight core references spanning 1977–2024.

2. Strengths

2.1. Scholarly Scope and Clarity

The manuscript offers one of the most lucid expository treatments of the microarray-NGS continuum available in a single chapter. The exposition is linear, well-structured, and bridges molecular biology, statistics, and computational analysis effectively. The historical contextualisation—from Sanger sequencing to Oxford Nanopore—is well balanced and accurate.

2.2. Methodological Depth

The section *Methodology* (pp. 3–6) demonstrates **commendable mathematical rigour**, providing explicit formulations for:

 Signal quantification and background correction models Quantile and Loess normalisation

workflow diagram (p. 13) is particularly strong pedagogically.

2.3. Computational Reproducibility

- Differential-expression tests and multiple-testing corrections (Benjamini-Hochberg)
- Negative-binomial modelling for RNA-Seq

Such detail is rarely found in pedagogical chapters and will be invaluable to interdisciplinary readers.

The inclusion of a fully functional Python package-style script (pp. 18-25) with docstrings, parameter

accessible, interoperable, reusable) and strongly supports the chapter's didactic purpose.

2.4. Figures and Visual Design Figures 1–7 are of publication quality, clearly labelled, and conceptually aligned with the text. The heatmap and volcano plot (pp. 8-9) effectively translate the statistical analyses into intuitive visual outputs. The

descriptions, and figure-generation routines is exemplary. It meets the FAIR data-science principles (findable,

2.5. Writing and Style

The language is precise, formal, and free of verbosity; terminology conforms to international genomics standards. The narrative maintains British academic tone and avoids anthropomorphic metaphors—a mark of stylistic maturity.

3. Weaknesses and Limitations

Although the chapter cites authoritative sources, eight references are insufficient for an 8 500-word

3.1. Citational Density

manuscript. Key methodological papers—particularly for DESeq2, edgeR, and quantile-normalisation algorithms—should be added to reinforce scholarly grounding. 3.2. Empirical Validation

The results section is based entirely on synthetic data generated in silico. While acceptable for

demonstration, a brief validation subsection comparing simulated and real datasets (e.g., GEO microarray and TCGA RNA-Seq examples) would strengthen scientific credibility. 3.3. Overlap with Review Literature

Parts of Sections 4.1–4.2 restate material well established in prior reviews (e.g., Rizzo & Buck 2012; Pareek et al. 2011). The author could enhance originality by incorporating recent comparative metrics such as throughput-per-cost ratios or AI-driven variant-calling benchmarks (2023-2025).

The code is elegant but could benefit from: Modularisation into importable functions with command-line arguments.

3.4. Python Implementation Refinement

· Comments on runtime and memory requirements.

- Sample output images in an appendix for readers without Python environments.
- 3.5. Formatting

Minor typographical adjustments would improve consistency: Standardise equation numbering and variable symbols.

Harmonise reference style (APA 7 vs Vancouver).

Ensure italics for statistical parameters (μ , σ , ϕ) throughout.

4. Originality and Significance

delivery justify publication as a reference work or advanced teaching text. The manuscript's computational sections could serve as a template for future educational supplements in bioinformatics periodicals. 5. Ethical and Scholarly Compliance

The integration of quantitative genomics, computational reproducibility, and pedagogical clarity is notably

original for a single-author chapter. While the subject matter is not novel per se, the synthesis and didactic

Code and references are properly attributed. Visuals appear author-generated.

Institutional affiliation and correspondence are clearly stated.

No ethical concerns detected; data are simulated.

- 6. Recommendation

References / Literature integration

Criterion

Scientific soundness	****
Clarity of exposition	****
Originality / Added value	****
Data and validation	****

Evaluation

★★★☆

Presentation quality **** Overall recommendation Accept with minor revisions

7. Required Revisions Before Publication

reliability of the illustrative code.

1. Expand the reference list (add ≥10 recent papers: 2019–2025) covering machine-learning in

- sequencing, third-generation error correction, and statistical packages. 2. Insert a short paragraph on empirical validation (even simulated vs. public datasets) to reinforce the
- 4. Add a brief concluding reflection (2-3 paragraphs) linking these technologies to forthcoming Alenabled precision-medicine infrastructures.

3. Standardise equations and typography, ensuring consistent symbol formatting and numbering.

8. Final Assessment

This is a high-calibre, methodologically robust, and pedagogically outstanding manuscript suitable for publication in a reputable periodical such as Computational and Structural Biotechnology Journal, Briefings in

Bioinformatics, or Methods in Molecular Biology. Its clarity, completeness, and cross-disciplinary accessibility make it a model chapter for genomic technology

education.

Verdict: Accept pending minor revisions.