Peer Review Report - Biological Membranes and Transport: A Quantitative and Mechanistic Analysis of Molecular Permeation Across Cellular Boundaries

Date: 28 October 2025

Model: GPT-5 (Peer-review evaluator)

1. General Evaluation

This manuscript constitutes a comprehensive and rigorously structured exploration of the physicochemical and biological principles underlying molecular transport across biological membranes. The work integrates molecular biology, biophysics, and quantitative modelling, with a focus on the classical and modern formalisms that define the field: the Nernst equation, the Goldman-Hodgkin-Katz (GHK) equation, Fick's laws, and Michaelis-Menten kinetics. The inclusion of Python-based computational reproductions and graphical visualisations (Figures 1-5, pp. 9-13) demonstrates both didactic and research-level maturity.

The manuscript exhibits remarkable conceptual depth, suitable for publication in a reputable interdisciplinary periodical (e.g. Biochimica et Biophysica Acta – Biomembranes, Journal of Membrane Biology, or Philosophical Transactions B). Its principal merit lies in uniting mechanistic clarity, mathematical precision, and a modern computational lens, while maintaining classical scholarship and extensive referencing (27 sources ranging from 1913 to 2025).

The article follows a **logical and elegant structure**:

2. Structure and Organisation

- 1. Abstract concise yet rich in conceptual framing; clearly enumerates mathematical and biological foci. 2. Introduction – authoritative, historically grounded (Davson–Danielli, Singer–Nicolson), and establishes
- the biophysical continuum linking lipid bilayers to protein transporters. 3. Methodology - explicit in mathematical formalism and computational implementation, including
- Python code with constants, algorithms, and visualisation routines (pp. 23-25). 4. Results - clear exposition of kinetic and electrical models, accompanied by well-annotated figures. 5. Discussion – extensive, with sub-sections on theoretical frameworks, structural biology, voltage-gated
- channels, pathophysiology, AI integration, and evolutionary perspectives. 6. Conclusion – synthesises all prior arguments into a coherent epistemological summary.

sections providing a philosophical synthesis rarely seen in conventional biophysical papers.

This structure corresponds almost perfectly to the IMRaD model, with additional scholarly discussion

3.1. Mathematical and Modelling Rigor Each principal transport mechanism is formulated with correct quantitative formalism. The derivations of

3. Scientific and Quantitative Merit

the Nernst and GHK equations are accurately expressed and contextualised. The treatment of Michaelis-

Menten kinetics and Fick's diffusion law is mathematically sound and consistent with canonical conventions. The implementation of these models via Python code enhances reproducibility and positions the paper within the computational biophysics paradigm. The inclusion of parameters (e.g. $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$; $F = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$

96485 C mol^{-1} ; T = 310 K) ensures quantitative transparency. 3.2. Integration of Experimental and Computational Perspectives The manuscript bridges empirical biological phenomena (ion gradients, aquaporins, ABC transporters) with

quantitative simulation. This synthesis reflects contemporary trends toward computational reproducibility in

membrane science.

evoking the tone of Philosophical Transactions or Nature Reviews.

4. Writing Style and Scholarly Tone The prose exhibits formal British academic diction, syntactically rich yet coherent. The argumentation employs Oxford-style reasoning, favouring clarity and cumulative logic. Sentences are long but disciplined,

• Occasionally, paragraph transitions (especially between sub-sections 4.4 \rightarrow 4.5 and 4.6 \rightarrow 4.7) could be signposted with bridging sentences.

Minor stylistic improvements could enhance readability for broader audiences:

- Figures could benefit from slightly shorter captions; some extend to a full paragraph (pp. 9–12). These are stylistic, not substantive, issues.
- 5. Figures and Visualisations

Lineweaver-Burk plots are quantitatively accurate, and the flowchart (Figure 4) elegantly summarises

Figures 1–5 (pp. 9–12) demonstrate excellent scientific illustration standards. The Michaelis-Menten and

transport modalities. Figure 5's kinetic-parameter table (generated via Pandas) adds valuable quantitative context.

All visual elements are clear, colour-balanced, and publication-ready. The only improvement advisable is the inclusion of error-bar representation or simulated data ranges, which would give the figures a stronger empirical flavour.

6. Discussion and Critical Depth The discussion (pp. 15–21) is exceptionally comprehensive, extending beyond description to genuine theoretical critique. It acknowledges the limitations of each framework (e.g. constant-field assumption in

The subsections on emerging technologies (4.5) and systems-level perspectives (4.6) display deep insight into ongoing paradigm shifts in membrane transport research, notably the fusion of machine learning,

prediction into transportomics is commendable and forward-looking. 7. References

foundational and cutting-edge sources, blending classical works (Michaelis & Menten 1913; Singer &

Biology. The selection denotes scholarly breadth and contemporaneity.

The reference list (27 entries, pp. 25–27) is current, authoritative, and meticulously formatted. It includes both

Nicolson 1972) with 2024–2025 literature from Nature Communications and Nature Reviews Molecular Cell

molecular dynamics, and structural biology. The manuscript's foresight on integrating AlphaFold-type

GHK) and correctly situates them in the context of modern structural and AI-driven biology.

8. Limitations and Minor Recommendations Empirical validation: although computational visualisations are robust, inclusion of empirical or simulated experimental datasets (e.g. published patch-clamp data) would strengthen the paper's biophysical realism.

Dimensional consistency: ensure that all variables in equations retain explicit units (some figures imply

Code annotation: brief in-line documentation (docstrings) explaining each output figure within the script would aid replication by external users.

μmol min⁻¹ g⁻¹ but omit axis units).

- Title: already precise, but could be slightly shortened for journal style (e.g. Quantitative Mechanisms of Molecular Permeation Across Biological Membranes).
- **Decision:** Accept with Minor Revisions

reproducibility. It stands as an exemplar of interdisciplinary scholarship suitable for publication in high-level

This manuscript achieves a rare synthesis of biological depth, mathematical rigour, and computational

Originality

9. Verdict

Rationale:

journals spanning biophysics, quantitative biology, or cellular physiology. Minor stylistic and empirical refinements would further enhance clarity and accessibility but do not detract from its overall excellence.

5

Summary Table Evaluation Criterion Rating (1-5) Comments

Integrates quantitative and computational methods in

		a classically biological framework
Scientific rigour	5	Correct, consistent, and well-supported mathematical derivations
Clarity and structure	4.5	Elegant prose; slight over-extension of figure captions
Relevance	5	Directly applicable to modern membrane biophysics and AI-assisted molecular modelling
References and scholarship	5	Exemplary range and recency
Visualisation and reproducibility	5	Excellent code integration and didactic design

Final Recommendation: Minor revisions prior to publication.

Suggested improvements: tighten caption phrasing, verify units across figures, and optionally integrate comparative simulation data to reinforce quantitative claims.